Statements and open problems on decidable sets $X \subseteq \mathbb{N}$ that contain informal notions and refer to the current knowledge on X

APOLONIUSZ TYSZKA

ABSTRACT. For a set $X \subseteq \mathbb{N}$ whose infiniteness is false or unproven, we define which elements of X are classified as known. No known set $X \subseteq \mathbb{N}$ satisfies Conditions (1) - (4) and is widely known in number theory or naturally defined, where this term has only informal meaning. (1) A known algorithm with no input returns an integer n satisfying $\operatorname{card}(X) < \omega \Rightarrow X \subseteq (-\infty, n]$. (2) A known algorithm for every $k \in \mathbb{N}$ decides whether or not $k \in X$. (3) No known algorithm with no input returns the logical value of the statement $\operatorname{card}(X) = \omega$. (4) There are many elements of X and it is conjectured, though so far unproven, that X is infinite. (5) X is naturally defined. The infiniteness of X is false or unproven. X has the simplest definition among known sets $Y \subseteq \mathbb{N}$ with the same set of known elements. The set $X = \{n \in \mathbb{N} : \text{the interval } [-1, n] \text{ contains more than } 29.5 + \frac{11!}{3n+1} \cdot \sin(n) \text{ primes of the form } k! + 1 \}$ satisfies Conditions (1) - (5) except the requirement that X is naturally defined. $S01893 \in X$. Condition (1) holds with n = 501893. $\operatorname{card}(X \cap [0, 501893]) = 159827$. $X \cap [501894, \infty) = \{n \in \mathbb{N} : \text{the interval } [-1, n] \text{ contains at least } 30 \text{ primes of the form } k! + 1 \}$. We present a table that shows satisfiable conjunctions of the form #(C) condition #(C)0 (Condition #(C)1) #(C)2 (Condition #(C)3) #(C)3 (Condition #(C)4) forever, if for every algorithm with no input, at some future day, a computer will be able to execute this algorithm in 1 second or less.

This article is a continuation of the article [15]. The results of this article and the article [15] were presented at the 25th Conference Applications of Logic in Philosophy and the Foundations of Mathematics, see http://www.applications-of-logic.uni.wroc.pl/Program-1. Nicolas D. Goodman observed that epistemic notions increase the scope of mathematics, see [4]. The article [4] does not discuss the notion of the current mathematical knowledge.

1. BASIC DEFINITIONS

Algorithms always terminate. Semi-algorithms may not terminate. There is the distinction between *existing algorithms* (i.e. algorithms whose existence is provable in ZFC) and *known algorithms* (i.e. algorithms whose definition is constructive and currently known), see [2], [10], [12, p. 9], [15]. A definition of an integer n is called *constructive*, if it provides a known algorithm with no input that returns n. Definition 1.1 applies to sets $X \subseteq \mathbb{N}$ whose infiniteness is false or unproven.

Definition 1.1. We say that a non-negative integer k is a known element of X, if $k \in X$ and we know an algebraic expression that defines k and consists of the following signs: 1 (one), + (addition), - (subtraction), · (multiplication), ^ (exponentiation with exponent in \mathbb{N}), ! (factorial of a non-negative integer), ((left parenthesis),) (right parenthesis).

The set of known elements of *X* is finite and time-dependent, so cannot be defined in the formal language of classical mathematics. Let *t* denote the largest twin prime that is

Received: 24.10.2022. In revised form: 24.05.2023. Accepted: 31.05.2023

²⁰²⁰ Mathematics Subject Classification. 03F55, 11A41.

Key words and phrases. constructive algorithms, current knowledge, decidable sets, epistemic notions, informal notions, known algorithms, known elements, special primes.

Definition 1.2. Conditions (1) – (5) concern sets $X \subseteq \mathbb{N}$.

- (1) A known algorithm with no input returns an integer n satisfying $card(X) < \omega \Rightarrow X \subseteq (-\infty, n]$.
- (2) A known algorithm for every $k \in \mathbb{N}$ decides whether or not $k \in X$.
- (3) No known algorithm with no input returns the logical value of the statement $card(X) = \omega$.
- (4) There are many elements of *X* and it is conjectured, though so far unproven, that *X* is infinite.
- (5) X is naturally defined. The infiniteness of X is false or unproven. X has the simplest definition among known sets $\mathcal{Y} \subseteq \mathbb{N}$ with the same set of known elements.

Condition (3) implies that no known proof shows the finiteness/infiniteness of X. No known set $X \subseteq \mathbb{N}$ satisfies Conditions (1) – (4) and is widely known in number theory or naturally defined, where this term has only informal meaning.

2. MAIN RESULTS

Edmund Landau's conjecture states that the set \mathcal{P}_{n^2+1} of primes of the form n^2+1 is infinite, see [13], [14], [16].

Statement 1. The statement

$$\exists n \in \mathbb{N} \left(\operatorname{card}(\mathcal{P}_{n^2+1}) < \omega \Rightarrow \mathcal{P}_{n^2+1} \subseteq [2, n+3] \right)$$

remains unproven in ZFC and classical logic without the law of excluded middle.

Let $f(1) = 10^6$, and let $f(n + 1) = f(n)^{f(n)}$ for every positive integer n.

Statement 2. The set

$$\mathcal{X} = \{k \in \mathbb{N} : (10^6 < k) \Rightarrow (f(10^6), f(k)) \cap \mathcal{P}_{n^2+1} \neq \emptyset\}$$

satisfies Conditions (1) - (4). Condition (5) fails for X.

Proof. Condition (4) holds as $X \supseteq \{0, ..., 10^6\}$ and the set \mathcal{P}_{n^2+1} is conjecturally infinite. Due to known physics we are not able to confirm by a direct computation that some element of \mathcal{P}_{n^2+1} is greater than $f(10^6)$, see [8]. Thus Condition (3) holds. Condition (2) holds trivially. Since the set

$$\{k \in \mathbb{N} : (10^6 < k) \land (f(10^6), f(k)) \cap \mathcal{P}_{n^2+1} \neq \emptyset\}$$

is empty or infinite, Condition (1) holds with $n = 10^6$. Condition (5) fails as the set of known elements of X equals $\{0, ..., 10^6\}$.

Statements 3 and 4 provide stronger examples.

Conjecture 2.1. ([1, p. 443], [5]). The are infinitely many primes of the form k! + 1.

For a non-negative integer n, let $\rho(n)$ denote $29.5 + \frac{11!}{3n+1} \cdot \sin(n)$.

Statement 3. The set

$$X = \{n \in \mathbb{N} : \text{the interval } [-1, n] \text{ contains more than } \rho(n) \text{ primes of the form } k! + 1\}$$

satisfies Conditions (1) – (5) except the requirement that X is naturally defined. $501893 \in X$. Condition (1) holds with n = 501893. $card(X \cap [0, 501893]) = 159827$. $X \cap [501894, \infty) = \{n \in \mathbb{N} : the interval [-1, n] contains at least 30 primes of the form <math>k! + 1\}$.

Proof. For every integer $n \ge 11!$, 30 is the smallest integer greater than $\rho(n)$. By this, if $n \in \mathcal{X} \cap [11!, \infty)$, then n+1, n+2, n+3, ... ∈ \mathcal{X} . Hence, Condition (1) holds with n=11!-1. We explicitly know 24 positive integers k such that k!+1 is prime, see [3]. The inequality card($\{k \in \mathbb{N} \setminus \{0\} : k!+1 \text{ is prime}\}$) > 24 remains unproven. Since 24 < 30, Condition (3) holds. The interval [-1,11!-1] contains exactly three primes of the form k!+1: 1!+1, 2!+1, 3!+1. For every integer n > 503000, the inequality $\rho(n) > 3$ holds. Therefore, the execution of the following MuPAD code

```
m:=0:
for n from 0.0 to 503000.0 do
if n<1!+1 then r:=0 end_if:
if n>=1!+1 and n<2!+1 then r:=1 end_if:
if n>=2!+1 and n<3!+1 then r:=2 end_if:
if n>=3!+1 then r:=3 end_if:
if r>29.5+(11!/(3*n+1))*sin(n) then
m:=m+1:
print([n,m]):
end_if:
end for:
```

displays the all known elements of X. The output ends with the line [501893.0, 159827], which proves Condition (4).

To formulate Statement 4 and its proof, we need some lemmas. For a non-negative integer n, let $\theta(n)$ denote the largest integer divisor of $10^{10^{10}}$ smaller than n. For a non-negative integer n, let $\theta_1(n)$ denote the largest integer divisor of 10^{10} smaller than n.

Lemma 2.1. For every integer $j > 10^{10^{10}}$, $\theta(j) = 10^{10^{10}}$. For every integer $j > 10^{10}$, $\theta_1(j) = 10^{10}$.

Lemma 2.2. For every integer $j \in (6553600, 7812500]$, $\theta(j) = 6553600$.

Proof. 6553600 equals $2^{18} \cdot 5^2$ and divides $10^{10^{10}}$. 7812500 < 2^{24} . 7812500 < 5^{10} . We need to prove that every integer $j \in (6553600, 7812500)$ does not divide $10^{10^{10}}$. It holds as the set

$$\left\{2^{u} \cdot 5^{v} : (u \in \{0, \dots, 23\}) \land (v \in \{0, \dots, 9\})\right\}$$

contains 6553600 and 7812500 as consecutive elements.

Lemma 2.3. *The number* $6553600^2 + 1$ *is prime.*

Proof. The following PARI/GP ([9]) command

```
isprime(6553600^2+1, {flag=2})
```

returns 1. This command performs the APRCL primality test, the best deterministic primality test algorithm ([17, p. 226]). It rigorously shows that the number $6553600^2 + 1$ is prime.

In the next lemmas, the execution of the command isprime (n,{flag=2}) proves the primality of n. Let κ denote the function

$$\mathbb{N}\ni n\stackrel{K}{\longrightarrow} the_exponent_of_2_in_the_prime_factorization_of_\underbrace{n+1}\in\mathbb{N}$$

Lemma 2.4. The set $X_1 = \{n \in \mathbb{N} : (\theta_1(n) + \kappa(n))^2 + 1 \text{ is prime} \}$ is infinite.

Proof. Let i = 142101504. By the inequality $2^i \ge 2 + 10^{10}$ and Lemma 2.1, for every non-negative integer m, the number

$$\left(\theta_1 \left(2^i \cdot (2m+1) - 1\right) + \kappa \left(2^i \cdot (2m+1) - 1\right)\right)^2 + 1 = \left(10^{10} + i\right)^2 + 1$$

is prime.

Before Open Problem 1, X denotes the set $\{n \in \mathbb{N} : (\theta(n) + \kappa(n))^2 + 1 \text{ is prime}\}.$

Lemma 2.5. For every $n \in X \cap \left(10^{10^{10}}, \infty\right)$ and for every non-negative integer j, $3^j\cdot (n+1)-1\in\mathcal{X}\cap \left(10^{10^{10}},\infty\right).$

Proof. By the inequality $3^{j} \cdot (n+1) - 1 \ge n$ and Lemma 2.1,

$$\theta\left(3^{j}\cdot(n+1)-1\right)+\kappa\left(3^{j}\cdot(n+1)-1\right)=10^{10^{10}}+\kappa(n)=\theta(n)+\kappa(n)$$

Lemma 2.6. card(X) \geq 629450.

Proof. By Lemmas 2.2 and 2.3, for every even integer $i \in (6553600, 7812500]$, the number $(\theta(j) + \kappa(j))^2 + 1 = (6553600 + 0)^2 + 1$ is prime. Hence,

$$\{2k: k \in \mathbb{N}\} \cap (6553600, 7812500] \subseteq X$$

Consequently,

$$\operatorname{card}(X) \geq \operatorname{card}(\{2k: k \in \mathbb{N}\} \cap (6553600, 7812500]) = \frac{7812500 - 6553600}{2} = 629450$$

Lemma 2.7. $10242 \in X$ and $10242 \notin X_1$.

Proof. The number $10240 = 2^{11} \cdot 5$ divides 10^{10}^{10} . Hence, $\theta(10242) = 10240$. The number $(\theta(10242) + \kappa(10242))^2 + 1 = (10240 + 0)^2 + 1$ is prime. The set

$$\left\{2^{u} \cdot 5^{v} : (u \in \{0, \dots, 10\}) \land (v \in \{0, \dots, 10\})\right\}$$

contains 10000 and 12500 as consecutive elements. Hence, $\theta_1(10242) = 10000$. The number $(\theta_1(10242) + \kappa(10242))^2 + 1 = (10000 + 0)^2 + 1 = 17.5882353$ is composite.

Statement 4. The set X satisfies Conditions (1) – (5) except the requirement that X is naturally defined.

Proof. Condition (2) holds trivially. Let δ denote $10^{10^{10}}$. By Lemma 2.5, Condition (1) holds for $n = \delta$. Lemma 2.5 and the unproven statement $\mathcal{P}_{n^2+1} \cap [\delta^2 + 1, \infty) \neq \emptyset$ show Condition (3). The same argument and Lemma 2.6 yield Condition (4). By Lemma 2.4, the set X_1 is infinite. Since Definition 1.1 applies to sets $X \subseteq \mathbb{N}$ whose infiniteness is false or unproven, Condition (5) holds except the requirement that X is naturally defined.

The set X satisfies Condition (5) except the requirement that X is naturally defined. It is true because X_1 is infinite by Lemma 2.4 and Definition 1.1 applies only to sets $X \subseteq \mathbb{N}$ whose infiniteness is false or unproven. Ignoring this restriction, X still satisfies the same identical condition due to Lemma 2.7.

Proposition 2.1. *No set* $X \subseteq \mathbb{N}$ *will satisfy Conditions* (1) – (4) *forever, if for every algorithm* with no input, at some future day, a computer will be able to execute this algorithm in 1 second or less.

П

Proof. The proof goes by contradiction. We fix an integer n that satisfies Condition (1). Since Conditions (1) – (3) will hold forever, the semi-algorithm in Figure 1 never terminates and sequentially prints the following sentences:

Figure 1 Semi-algorithm that terminates if and only if *X* is infinite

The sentences from the sequence (T) and our assumption imply that for every integer m > n computed by a known algorithm, at some future day, a computer will be able to confirm in 1 second or less that $(n,m] \cap X = \emptyset$. Thus, at some future day, numerical evidence will support the conjecture that the set X is finite, contrary to the conjecture in Condition (4).

The physical limits of computation ([8]) disprove the assumption of Proposition 2.1.

Open Problem 1. *Is there a set* $X \subseteq \mathbb{N}$ *which satisfies Conditions* (1) – (5) ?

Open Problem 1 asks about the existence of a year $t \ge 2022$ in which the conjunction

(Condition 1) \land (Condition 2) \land (Condition 3) \land (Condition 4) \land (Condition 5)

will hold for some $X \subseteq \mathbb{N}$. For every year $t \ge 2022$ and for every $i \in \{1, 2, 3\}$, a positive solution to Open Problem i in the year t may change in the future. Currently, the answers to Open Problems 1–5 are negative.

3. Satisfiable conjunctions which consist of Conditions (1) – (5) and their negations

The set $X = \mathcal{P}_{n^2+1}$ satisfies the conjunction

 \neg (Condition 1) \land (Condition 2) \land (Condition 3) \land (Condition 4) \land (Condition 5)

The set $X = \{0, ..., 10^6\} \cup \mathcal{P}_{n^2+1}$ satisfies the conjunction

 \neg (Condition 1) \land (Condition 2) \land (Condition 3) \land (Condition 4) \land \neg (Condition 5)

The numbers $2^{2^k} + 1$ are prime for $k \in \{0, 1, 2, 3, 4\}$. It is open whether or not there are infinitely many primes of the form $2^{2^k} + 1$, see [7, p. 158] and [11, p. 74]. It is open whether or not there are infinitely many composite numbers of the form $2^{2^k} + 1$, see [7, p. 159] and [11, p. 74]. Most mathematicians believe that $2^{2^k} + 1$ is composite for every integer $k \ge 5$, see [6, p. 23].

The set

$$\mathcal{X} = \begin{cases} \mathbb{N}, & \text{if } 2^{2} f(9^{9}) \\ \{0, \dots, 10^{6}\}, & \text{otherwise} \end{cases}$$

satisfies the conjunction

(Condition 1)
$$\land$$
 (Condition 2) \land \neg (Condition 3) \land (Condition 4) \land \neg (Condition 5)

Open Problem 2. *Is there a set* $X \subseteq \mathbb{N}$ *that satisfies the conjunction*

(Condition 1)
$$\land$$
 (Condition 2) $\land \neg$ (Condition 3) \land (Condition 4) \land (Condition 5)?

The set

$$\mathcal{X} = \left\{ \begin{array}{l} \mathbb{N}, \ if \ 2^{2^{f(9^9)}} + 1 \ is \ composite \\ \{0, \ldots, 10^6\} \cup \\ \{n \in \mathbb{N} : n \ is \ the \ sixth \ prime \ number \ of \ the \ form \ 2^{2^k} + 1\}, \ otherwise \end{array} \right.$$

satisfies the conjunction

$$\neg$$
(Condition 1) \land (Condition 2) \land \neg (Condition 3) \land (Condition 4) \land \neg (Condition 5)

Open Problem 3. *Is there a set* $X \subseteq \mathbb{N}$ *that satisfies the conjunction*

$$\neg$$
(Condition 1) \land (Condition 2) \land \neg (Condition 3) \land (Condition 4) \land (Condition 5)?

It is possible, although very doubtful, that at some future day, the set $X = \mathcal{P}_{n^2+1}$ will solve Open Problem 2. The same is true for Open Problem 3. It is possible, although very doubtful, that at some future day, the set $X = \{k \in \mathbb{N} : 2^{2^k} + 1 \text{ is composite}\}$ will solve Open Problem 1. The same is true for Open Problems 2 and 3.

Table 1 shows satisfiable conjunctions of the form

$$\#(Condition 1) \land (Condition 2) \land \#(Condition 3) \land (Condition 4) \land \#(Condition 5)$$

where # denotes the negation \neg or the absence of any symbol. Table 1 differs from Table 1 in [15] for three sets X. These sets X have the index new.

	(Cond. 2) ∧ (Cond. 3) ∧ (Cond. 4)	$(Cond. 2) \land \neg(Cond. 3) \land (Cond. 4)$
(Cond. 1) ∧	Open Problem 1	Open Problem 2
(Cond. 5)		
(Cond. 1) ∧ ¬(Cond. 5)	$X_{new} = \{n \in \mathbb{N} : the interval $ [-1,n] contains more than 29.5 + $\frac{11!}{3n+1} \cdot \sin(n)$ primes of the form $k! + 1\}$	$X_{new} = \begin{cases} \mathbb{N}, & \text{if } 2^{2} + 1 \text{ is composite} \\ \{0, \dots, 10^{6}\}, & \text{otherwise} \end{cases}$
¬(Cond. 1) ∧	$X = \mathcal{P}_{n^2+1}$	Open Problem 3
(Cond. 5)		
¬(Cond. 1) ∧ ¬(Cond. 5)	$X = \{0, \dots, 10^6\} \cup \mathcal{P}_{n^2+1}$	$X_{new} = \begin{cases} \mathbb{N}, & \text{if } 2^{2^{f(9^9)}} + 1 \text{ is composite} \\ \{0, \dots, 10^6\} \cup \{n \in \mathbb{N} : n \text{ is} \\ \text{the sixth prime number of} \\ \text{the form } 2^{2^k} + 1\}, & \text{otherwise} \end{cases}$

Table 1 Five satisfiable conjunctions

Definition 3.3. We say that an integer n is a threshold number of a set $X \subseteq \mathbb{N}$, if $\operatorname{card}(X) < \omega \Rightarrow X \subseteq (-\infty, n]$.

If a set $X \subseteq \mathbb{N}$ is empty or infinite, then any integer n is a threshold number of X. If a set $X \subseteq \mathbb{N}$ is non-empty and finite, then the all threshold numbers of X form the set $[\max(X), \infty) \cap \mathbb{N}$.

Open Problem 4. *Is there a known threshold number of* \mathcal{P}_{n^2+1} ?

Open Problem 4 asks about the existence of a year $t \ge 2022$ in which the implication $\operatorname{card}(\mathcal{P}_{n^2+1}) < \omega \Rightarrow \mathcal{P}_{n^2+1} \subseteq (-\infty, n]$ will hold for some known integer n.

Let \mathcal{T} denote the set of twin primes.

Open Problem 5. *Is there a known threshold number of* \mathcal{T} ?

Open Problem 5 asks about the existence of a year $t \ge 2022$ in which the implication $\operatorname{card}(\mathcal{T}) < \omega \Rightarrow \mathcal{T} \subseteq (-\infty, n]$ will hold for some known integer n.

REFERENCES

- [1] Caldwell, C. K.; Gallot, Y. On the primality of $n! \pm 1$ and $2 \times 3 \times 5 \times \cdots \times p \pm 1$, Math. Comp. 71 (2002), no. 237, 441–448. http://doi.org/10.1090/S0025-5718-01-01315-1.
- [2] Case, J.; Ralston, M. Beyond Rogers' non-constructively computable function. in: *The nature of computation*, Lecture Notes in Comput. Sci., 7921, 45–54, Springer, Heidelberg, 2013. http://link.springer.com/chapter/10.1007/978-3-642-39053-1_6.
- [3] Factorial prime http://en.wikipedia.org/wiki/Factorial_prime.
- [4] Goodman, N. D. The knowing mathematician. Synthese 60 (1984), no. 1, 21–38. http://link.springer.com/article/10.1007/BF00485616; reprinted in: Leblanc, H., Mendelson, E., Orenstein, A., Foundations: Logic, Language, and Mathematics, Springer, 1984, 21–38, http://link.springer.com/book/10.1007/978-94-017-1592-8.
- [5] Is n! + 1 often a prime? http://math.stackexchange.com/questions/853085/is-n-1-often-a-prime.
- [6] De Koninck, J.-M.; Luca, F. *Analytic number theory: Exploring the anatomy of integers*. American Mathematical Society, Providence, RI, 2012.
- [7] Křížek, M.; Luca, F.; Somer, L. 17 lectures on Fermat numbers: from number theory to geometry. Springer, New York, 2001.
- [8] Lloyd, S. Ultimate physical limits to computation. Nature 406 (2000), 1047–1054. http://doi.org/10. 1038/35023282.
- [9] PARI/GP online documentation. http://pari.math.u-bordeaux.fr/dochtml/html/Arithmetic_functions.html.
- [10] Reitzig, R. How can it be decidable whether π has some sequence of digits? http://cs.stackexchange.com/questions/367/how-can-it-be-decidable-whether-pi-has-some-sequence-of-digits.
- [11] Ribenboim, P. The little book of bigger primes. 2nd ed., Springer, New York, 2004.
- [12] Rogers, H. Jr. Theory of recursive functions and effective computability. 2nd ed., MIT Press, Cambridge, MA, 1987.
- [13] Sloane, N. J. A. The On-Line Encyclopedia of Integer Sequences A002496, Primes of the form $n^2 + 1$. http://oeis.org/A002496.
- [14] Sloane, N. J. A., The On-Line Encyclopedia of Integer Sequences. A083844, Number of primes of the form $x^2 + 1 < 10^n$. http://oeis.org/A083844.
- [15] Tyszka, A. Statements and open problems on decidable sets $X \subseteq \mathbb{N}$ that refer to the current knowledge on X. *J. Appl. Math. Comput.* **16** (2022), no. 2, 31–35. http://doi.org/10.4316/JACSM.202202005.
- [16] Wolfram MathWorld Landau's Problems. http://mathworld.wolfram.com/LandausProblems. html.
- [17] Yan, S. Y. Number theory for computing. 2nd ed., Springer, Berlin, 2002.

FACULTY OF PRODUCTION AND POWER ENGINEERING UNIVERSITY OF AGRICULTURE BALICKA 116B, 30-149 KRAKÓW, POLAND Email address: rttyszka@cyf-kr.edu.pl