# Statements and open problems on decidable sets $\mathcal{X} \subseteq \mathbb{N}$ that contain informal notions and refer to the current knowledge on $X$ 

Apoloniusz Tyszka


#### Abstract

For a set $X \subseteq \mathbb{N}$ whose infiniteness is false or unproven, we define which elements of $X$ are classified as known. No known set $\mathcal{X} \subseteq \mathbb{N}$ satisfies Conditions (1) - (4) and is widely known in number theory or naturally defined, where this term has only informal meaning. (1) A known algorithm with no input returns an integer $n$ satisfying $\operatorname{card}(\mathcal{X})<\omega \Rightarrow \mathcal{X} \subseteq(-\infty, n]$. (2) A known algorithm for every $k \in \mathbb{N}$ decides whether or not $k \in \mathcal{X}$. (3) No known algorithm with no input returns the logical value of the statement $\operatorname{card}(\mathcal{X})=\omega$. (4) There are many elements of $X$ and it is conjectured, though so far unproven, that $\mathcal{X}$ is infinite. (5) $X$ is naturally defined. The infiniteness of $\mathcal{X}$ is false or unproven. $X$ has the simplest definition among known sets $\boldsymbol{Y} \subseteq \mathbb{N}$ with the same set of known elements. The set $X=\left\{n \in \mathbb{N}\right.$ : the interval $[-1, n]$ contains more than $29.5+\frac{11!}{3 n+1} \cdot \sin (n)$ primes of the form $\left.k!+1\right\}$ satisfies Conditions (1) - (5) except the requirement that $\mathcal{X}$ is naturally defined. $501893 \in \mathcal{X}$. Condition (1) holds with $n=501893$. $\operatorname{card}(X \cap[0,501893])=159827 . X \cap[501894, \infty)=\{n \in \mathbb{N}:$ the interval $[-1, n]$ contains at least 30 primes of the form $k!+1\}$. We present a table that shows satisfiable conjunctions of the form \#(Condition 1$) \wedge($ Condition 2$) \wedge$ $\#($ Condition 3$) \wedge($ Condition 4$) \wedge \#($ Condition 5$)$, where \# denotes the negation $\neg$ or the absence of any symbol. No set $\mathcal{X} \subseteq \mathbb{N}$ will satisfy Conditions (1) - (4) forever, if for every algorithm with no input, at some future day, a computer will be able to execute this algorithm in 1 second or less.


This article is a continuation of the article [15]. The results of this article and the article [15] were presented at the 25th Conference Applications of Logic in Philosophy and the Foundations of Mathematics, see http://www.applications-of-logic.uni. wroc.pl/Program-1. Nicolas D. Goodman observed that epistemic notions increase the scope of mathematics, see [4]. The article [4] does not discuss the notion of the current mathematical knowledge.

## 1. BASIC DEFINITIONS

Algorithms always terminate. Semi-algorithms may not terminate. There is the distinction between existing algorithms (i.e. algorithms whose existence is provable in ZFC) and known algorithms (i.e. algorithms whose definition is constructive and currently known), see [2], [10], [12, p. 9], [15]. A definition of an integer $n$ is called constructive, if it provides a known algorithm with no input that returns $n$. Definition 1.1 applies to sets $\mathcal{X} \subseteq \mathbb{N}$ whose infiniteness is false or unproven.
Definition 1.1. We say that a non-negative integer $k$ is a known element of $\mathcal{X}$, if $k \in \mathcal{X}$ and we know an algebraic expression that defines $k$ and consists of the following signs: 1 (one), $+($ addition $), ~-(s u b t r a c t i o n), ~ \cdot(m u l t i p l i c a t i o n), ~ ` ~(e x p o n e n t i a t i o n ~ w i t h ~ e x p o n e n t ~ i n ~ \mathbb{N})$, ! (factorial of a non-negative integer), ( (left parenthesis), ) (right parenthesis).

The set of known elements of $\mathcal{X}$ is finite and time-dependent, so cannot be defined in the formal language of classical mathematics. Let $t$ denote the largest twin prime that is

[^0]smaller than ((()((()!)!)!)!)!!!!!!!)!. The number $t$ is an unknown element of the set of twin primes.
Definition 1.2. Conditions (1) - (5) concern sets $\mathcal{X} \subseteq \mathbb{N}$.
(1) A known algorithm with no input returns an integer $n$ satisfying $\operatorname{card}(\mathcal{X})<\omega \Rightarrow$ $\mathcal{X} \subseteq(-\infty, n]$.
(2) A known algorithm for every $k \in \mathbb{N}$ decides whether or not $k \in \mathcal{X}$.
(3) No known algorithm with no input returns the logical value of the statement $\operatorname{card}(X)=\omega$.
(4) There are many elements of $\mathcal{X}$ and it is conjectured, though so far unproven, that $\mathcal{X}$ is infinite.
(5) $\mathcal{X}$ is naturally defined. The infiniteness of $\mathcal{X}$ is false or unproven. $\mathcal{X}$ has the simplest definition among known sets $y \subseteq \mathbb{N}$ with the same set of known elements.

Condition (3) implies that no known proof shows the finiteness/infiniteness of $\mathcal{X}$. No known set $\mathcal{X} \subseteq \mathbb{N}$ satisfies Conditions (1) - (4) and is widely known in number theory or naturally defined, where this term has only informal meaning.

## 2. Main results

Edmund Landau's conjecture states that the set $\mathcal{P}_{n^{2}+1}$ of primes of the form $n^{2}+1$ is infinite, see [13], [14], [16].
Statement 1. The statement

$$
\exists n \in \mathbb{N}\left(\operatorname{card}\left(\mathcal{P}_{n^{2}+1}\right)<\omega \Rightarrow \mathcal{P}_{n^{2}+1} \subseteq[2, n+3]\right)
$$

remains unproven in ZFC and classical logic without the law of excluded middle.
Let $f(1)=10^{6}$, and let $f(n+1)=f(n)^{f(n)}$ for every positive integer $n$.
Statement 2. The set

$$
\mathcal{X}=\left\{k \in \mathbb{N}:\left(10^{6}<k\right) \Rightarrow\left(f\left(10^{6}\right), f(k)\right) \cap \mathcal{P}_{n^{2}+1} \neq \emptyset\right\}
$$

satisfies Conditions (1)-(4). Condition (5) fails for $\mathcal{X}$.
Proof. Condition (4) holds as $\mathcal{X} \supseteq\left\{0, \ldots, 10^{6}\right\}$ and the set $\mathcal{P}_{n^{2}+1}$ is conjecturally infinite. Due to known physics we are not able to confirm by a direct computation that some element of $\mathcal{P}_{n^{2}+1}$ is greater than $f\left(10^{6}\right)$, see [8]. Thus Condition (3) holds. Condition (2) holds trivially. Since the set

$$
\left\{k \in \mathbb{N}:\left(10^{6}<k\right) \wedge\left(f\left(10^{6}\right), f(k)\right) \cap \mathcal{P}_{n^{2}+1} \neq \emptyset\right\}
$$

is empty or infinite, Condition (1) holds with $n=10^{6}$. Condition (5) fails as the set of known elements of $\mathcal{X}$ equals $\left\{0, \ldots, 10^{6}\right\}$.

Statements 3 and 4 provide stronger examples.
Conjecture 2.1. ([1, p. 443], [5]). The are infinitely many primes of the form $k!+1$.
For a non-negative integer $n$, let $\rho(n)$ denote $29.5+\frac{11!}{3 n+1} \cdot \sin (n)$.
Statement 3. The set

$$
\mathcal{X}=\{n \in \mathbb{N}: \text { the interval }[-1, n] \text { contains more than } \rho(n) \text { primes of the form } k!+1\}
$$

satisfies Conditions (1)-(5) except the requirement that $\mathcal{X}$ is naturally defined. $501893 \in \mathcal{X}$. Condition (1) holds with $n=501893$. $\operatorname{card}(X \cap[0,501893])=159827 . X \cap[501894, \infty)=$ $\{n \in \mathbb{N}$ : the interval $[-1, n]$ contains at least 30 primes of the form $k!+1\}$.

Proof. For every integer $n \geqslant 11!, 30$ is the smallest integer greater than $\rho(n)$. By this, if $n \in \mathcal{X} \cap[11!, \infty)$, then $n+1, n+2, n+3, \ldots \in \mathcal{X}$. Hence, Condition (1) holds with $n=11!-1$. We explicitly know 24 positive integers $k$ such that $k!+1$ is prime, see [3]. The inequality $\operatorname{card}(\{k \in \mathbb{N} \backslash\{0\}: k!+1$ is prime $\})>24$ remains unproven. Since $24<30$, Condition (3) holds. The interval $[-1,11!-1]$ contains exactly three primes of the form $k!+1$ : $1!+1,2!+1,3!+1$. For every integer $n>503000$, the inequality $\rho(n)>3$ holds. Therefore, the execution of the following MuPAD code

```
m:=0:
for n from 0.0 to 503000.0 do
if n<1!+1 then r:=0 end_if:
if }n>=1!+1 and n<2!+1 then r:=1 end_if
if }n>=2!+1 and n<3!+1 then r:=2 end_if
if }n>=3!+1 then r:=3 end_if
if r>29.5+(11!/(3*n+1))*sin(n) then
m:=m+1:
print([n,m]):
end_if:
end_for:
```

displays the all known elements of $\mathcal{X}$. The output ends with the line [501893.0, 159827], which proves Condition (4).

To formulate Statement 4 and its proof, we need some lemmas. For a non-negative integer $n$, let $\theta(n)$ denote the largest integer divisor of $10^{10^{10}}$ smaller than $n$. For a non-negative integer $n$, let $\theta_{1}(n)$ denote the largest integer divisor of $10^{10}$ smaller than $n$.
Lemma 2.1. For every integer $j>10^{10^{10}}, \theta(j)=10^{10^{10}}$. For every integer $j>10^{10}, \theta_{1}(j)=$ $10^{10}$.

Lemma 2.2. For every integer $j \in(6553600,7812500], \theta(j)=6553600$.
Proof. 6553600 equals $2^{18} \cdot 5^{2}$ and divides $10^{10^{10}}$. $7812500<2^{24}$. $7812500<5^{10}$. We need to prove that every integer $j \in(6553600,7812500)$ does not divide $10^{10^{10}}$. It holds as the set

$$
\left\{2^{u} \cdot 5^{v}:(u \in\{0, \ldots, 23\}) \wedge(v \in\{0, \ldots, 9\})\right\}
$$

contains 6553600 and 7812500 as consecutive elements.
Lemma 2.3. The number $6553600^{2}+1$ is prime.
Proof. The following PARI / GP ([9]) command

```
isprime(6553600^2+1,{flag=2})
```

returns 1. This command performs the APRCL primality test, the best deterministic primality test algorithm ([17, p. 226]). It rigorously shows that the number $6553600^{2}+1$ is prime.

In the next lemmas, the execution of the command isprime ( $n,\{\mathrm{fl}$ ag=2\}) proves the primality of $n$. Let $\kappa$ denote the function

$$
\mathbb{N} \ni n \xrightarrow{K} \text { the_exponent_of_2_in_the_prime_factorization_of_- } n+1 \in \mathbb{N}
$$

Lemma 2.4. The set $\mathcal{X}_{1}=\left\{n \in \mathbb{N}:\left(\theta_{1}(n)+\kappa(n)\right)^{2}+1\right.$ is prime $\}$ is infinite.

Proof. Let $i=142101504$. By the inequality $2^{i} \geqslant 2+10^{10}$ and Lemma 2.1, for every non-negative integer $m$, the number

$$
\left(\theta_{1}\left(2^{i} \cdot(2 m+1)-1\right)+\kappa\left(2^{i} \cdot(2 m+1)-1\right)\right)^{2}+1=\left(10^{10}+i\right)^{2}+1
$$

is prime.
Before Open Problem 1, $\mathcal{X}$ denotes the set $\left\{n \in \mathbb{N}:(\theta(n)+\kappa(n))^{2}+1\right.$ is prime $\}$.
Lemma 2.5. For every $n \in X \cap\left(10^{10^{10}}, \infty\right)$ and for every non-negative integer $j$, $3^{j} \cdot(n+1)-1 \in \mathcal{X} \cap\left(10^{10^{10}}, \infty\right)$.
Proof. By the inequality $3^{j} \cdot(n+1)-1 \geqslant n$ and Lemma 2.1,

$$
\theta\left(3^{j} \cdot(n+1)-1\right)+\kappa\left(3^{j} \cdot(n+1)-1\right)=10^{10^{10}}+\kappa(n)=\theta(n)+\kappa(n)
$$

Lemma 2.6. $\operatorname{card}(X) \geqslant 629450$.
Proof. By Lemmas 2.2 and 2.3, for every even integer $j \in(6553600,7812500]$, the number $(\theta(j)+\kappa(j))^{2}+1=(6553600+0)^{2}+1$ is prime. Hence,

$$
\{2 k: k \in \mathbb{N}\} \cap(6553600,7812500] \subseteq \mathcal{X}
$$

Consequently,

$$
\operatorname{card}(\mathcal{X}) \geqslant \operatorname{card}(\{2 k: k \in \mathbb{N}\} \cap(6553600,7812500])=\frac{7812500-6553600}{2}=629450
$$

Lemma 2.7. $10242 \in \mathcal{X}$ and $10242 \notin \mathcal{X}_{1}$.
Proof. The number $10240=2^{11} \cdot 5$ divides $10^{10^{10}}$. Hence, $\theta(10242)=10240$. The number $(\theta(10242)+\kappa(10242))^{2}+1=(10240+0)^{2}+1$ is prime. The set

$$
\left\{2^{u} \cdot 5^{v}:(u \in\{0, \ldots, 10\}) \wedge(v \in\{0, \ldots, 10\})\right\}
$$

contains 10000 and 12500 as consecutive elements. Hence, $\theta_{1}(10242)=10000$. The number $\left(\theta_{1}(10242)+\kappa(10242)\right)^{2}+1=(10000+0)^{2}+1=17 \cdot 5882353$ is composite.
Statement 4. The set $\mathcal{X}$ satisfies Conditions (1) - (5) except the requirement that $\mathcal{X}$ is naturally defined.
Proof. Condition (2) holds trivially. Let $\delta$ denote $10^{10^{10}}$. By Lemma 2.5, Condition (1) holds for $n=\delta$. Lemma 2.5 and the unproven statement $\mathcal{P}_{n^{2}+1} \cap\left[\delta^{2}+1, \infty\right) \neq \emptyset$ show Condition (3). The same argument and Lemma 2.6 yield Condition (4). By Lemma 2.4, the set $\mathcal{X}_{1}$ is infinite. Since Definition 1.1 applies to sets $\mathcal{X} \subseteq \mathbb{N}$ whose infiniteness is false or unproven, Condition (5) holds except the requirement that $\mathcal{X}$ is naturally defined.

The set $\mathcal{X}$ satisfies Condition (5) except the requirement that $\mathcal{X}$ is naturally defined. It is true because $\mathcal{X}_{1}$ is infinite by Lemma 2.4 and Definition 1.1 applies only to sets $\mathcal{X} \subseteq \mathbb{N}$ whose infiniteness is false or unproven. Ignoring this restriction, $\mathcal{X}$ still satisfies the same identical condition due to Lemma 2.7.
Proposition 2.1. No set $X \subseteq \mathbb{N}$ will satisfy Conditions (1) - (4) forever, if for every algorithm with no input, at some future day, a computer will be able to execute this algorithm in 1 second or less.

Proof. The proof goes by contradiction. We fix an integer $n$ that satisfies Condition (1). Since Conditions (1) - (3) will hold forever, the semi-algorithm in Figure 1 never terminates and sequentially prints the following sentences:

$$
\begin{equation*}
n+1 \notin \mathcal{X}, n+2 \notin \mathcal{X}, n+3 \notin \mathcal{X}, \ldots \tag{T}
\end{equation*}
$$



Figure 1 Semi-algorithm that terminates if and only if $\mathcal{X}$ is infinite
The sentences from the sequence ( $T$ ) and our assumption imply that for every integer $m>n$ computed by a known algorithm, at some future day, a computer will be able to confirm in 1 second or less that $(n, m] \cap \mathcal{X}=\emptyset$. Thus, at some future day, numerical evidence will support the conjecture that the set $\mathcal{X}$ is finite, contrary to the conjecture in Condition (4).

The physical limits of computation ([8]) disprove the assumption of Proposition 2.1.
Open Problem 1. Is there a set $\mathcal{X} \subseteq \mathbb{N}$ which satisfies Conditions (1)-(5)?
Open Problem 1 asks about the existence of a year $t \geqslant 2022$ in which the conjunction $($ Condition 1$) \wedge($ Condition 2$) \wedge($ Condition 3$) \wedge($ Condition 4$) \wedge($ Condition 5$)$
will hold for some $\mathcal{X} \subseteq \mathbb{N}$. For every year $t \geqslant 2022$ and for every $i \in\{1,2,3\}$, a positive solution to Open Problem $i$ in the year $t$ may change in the future. Currently, the answers to Open Problems 1-5 are negative.
3. SATISFIABLE CONJUNCTIONS WHICH CONSIST OF CONDITIONS (1) - (5) AND THEIR NEGATIONS

The set $\mathcal{X}=\mathcal{P}_{n^{2}+1}$ satisfies the conjunction
$\neg($ Condition 1$) \wedge($ Condition 2$) \wedge($ Condition 3$) \wedge($ Condition 4$) \wedge($ Condition 5$)$
The set $\mathcal{X}=\left\{0, \ldots, 10^{6}\right\} \cup \mathcal{P}_{n^{2}+1}$ satisfies the conjunction
$\neg($ Condition 1$) \wedge($ Condition 2$) \wedge($ Condition 3$) \wedge($ Condition 4$) \wedge \neg($ Condition 5$)$
The numbers $2^{2^{k}}+1$ are prime for $k \in\{0,1,2,3,4\}$. It is open whether or not there are infinitely many primes of the form $2^{2^{k}}+1$, see [7, p. 158] and [11, p. 74]. It is open whether or not there are infinitely many composite numbers of the form $2^{2^{k}}+1$, see [7, p. 159] and [11, p. 74]. Most mathematicians believe that $2^{2^{k}}+1$ is composite for every integer $k \geqslant 5$, see [6, p. 23].

The set

$$
X=\left\{\begin{array}{l}
\mathbb{N}, \text { if } 2^{2 f\left(9^{9}\right)}+1 \text { is composite } \\
\left\{0, \ldots, 10^{6}\right\}, \text { otherwise }
\end{array}\right.
$$

satisfies the conjunction
$($ Condition 1$) \wedge($ Condition 2$) \wedge \neg($ Condition 3$) \wedge($ Condition 4$) \wedge \neg($ Condition 5$)$
Open Problem 2. Is there a set $\mathcal{X} \subseteq \mathbb{N}$ that satisfies the conjunction
$($ Condition 1$) \wedge($ Condition 2$) \wedge \neg($ Condition 3$) \wedge($ Condition 4$) \wedge($ Condition 5$)$ ?
The set

$$
\mathcal{X}=\left\{\begin{array}{l}
\mathbb{N}, \text { if } 2^{2 f\left(9^{9}\right)}+1 \text { is composite } \\
\left\{0, \ldots, 10^{6}\right\} \cup \\
\left\{n \in \mathbb{N}: n \text { is the sixth prime number of the form } 2^{2^{k}}+1\right\}, \text { otherwise }
\end{array}\right.
$$ satisfies the conjunction

$\neg($ Condition 1$) \wedge($ Condition 2$) \wedge \neg($ Condition 3$) \wedge($ Condition 4$) \wedge \neg($ Condition 5$)$
Open Problem 3. Is there a set $X \subseteq \mathbb{N}$ that satisfies the conjunction
$\neg($ Condition 1$) \wedge($ Condition 2$) \wedge \neg($ Condition 3$) \wedge($ Condition 4$) \wedge($ Condition 5$)$ ?
It is possible, although very doubtful, that at some future day, the set $X=\mathcal{P}_{n^{2}+1}$ will solve Open Problem 2. The same is true for Open Problem 3. It is possible, although very doubtful, that at some future day, the set $X=\left\{k \in \mathbb{N}: 2^{2^{k}}+1\right.$ is composite $\}$ will solve Open Problem 1. The same is true for Open Problems 2 and 3.

Table 1 shows satisfiable conjunctions of the form

$$
\#(\text { Condition } 1) \wedge(\text { Condition } 2) \wedge \#(\text { Condition } 3) \wedge(\text { Condition } 4) \wedge \#(\text { Condition } 5)
$$

where \# denotes the negation $\neg$ or the absence of any symbol. Table 1 differs from Table 1 in [15] for three sets $\mathcal{X}$. These sets $\mathcal{X}$ have the index new.

|  | $\begin{aligned} & (\text { Cond. 2) } \wedge(\text { Cond. 3) } \wedge ~ \\ & (\text { Cond. 4) } \end{aligned}$ | (Cond. 2) $\wedge\urcorner($ Cond. 3) $\wedge($ Cond. 4) |
| :---: | :---: | :---: |
| $\begin{array}{\|l} \hline(\text { Cond. 1) ^ } \\ (\text { Cond. 5) } \\ \hline \end{array}$ | Open Problem 1 | Open Problem 2 |
| $\begin{gathered} (\text { Cond. 1) ^ } \\ \neg(\text { Cond. } 5) \end{gathered}$ | $X_{\text {new }}=\{n \in \mathbb{N}$ : the interval $[-1, n]$ contains more than $29.5+\frac{11!}{3 n+1} \cdot \sin (n)$ primes of the form $k!+1\}$ | $X_{\text {new }}=\left\{\begin{array}{l} \mathbb{N}, \text { if } 2^{2^{f\left(9^{9}\right)}}+1 \text { is composite } \\ \left\{0, \ldots, 10^{6}\right\}, \text { otherwise } \end{array}\right.$ |
| $\begin{aligned} & 7(\text { Cond. 1) ^ } \\ & \text { (Cond. 5) } \end{aligned}$ | $X=\mathcal{P}_{n^{2}+1}$ | Open Problem 3 |
| $\begin{aligned} & \neg(\text { Cond. 1) } \wedge \\ & \neg(\text { Cond. 5) } \end{aligned}$ | $X=\left\{0, \ldots, 10^{6}\right\} \cup \mathcal{P}_{n^{2}+1}$ | $X_{\text {new }}=\left\{\begin{array}{l} \mathbb{N}, \text { if } 2^{2^{f}\left(9^{9}\right)}+1 \text { is composite } \\ \left\{0, \ldots, 10^{6}\right\} \cup\{n \in \mathbb{N}: n \text { is } \\ \text { the sixth prime number of } \\ \text { the form } \left.2^{2^{k}}+1\right\} \text {, otherwise } \end{array}\right.$ |

Table 1 Five satisfiable conjunctions

Definition 3.3. We say that an integer $n$ is a threshold number of a set $\mathcal{X} \subseteq \mathbb{N}$, if $\operatorname{card}(X)<\omega \Rightarrow X \subseteq(-\infty, n]$.

If a set $X \subseteq \mathbb{N}$ is empty or infinite, then any integer $n$ is a threshold number of $X$. If a set $\mathcal{X} \subseteq \mathbb{N}$ is non-empty and finite, then the all threshold numbers of $\mathcal{X}$ form the set $[\max (\mathcal{X}), \infty) \cap \mathbb{N}$.

Open Problem 4. Is there a known threshold number of $\mathcal{P}_{n^{2}+1}$ ?
Open Problem 4 asks about the existence of a year $t \geqslant 2022$ in which the implication $\operatorname{card}\left(\mathcal{P}_{n^{2}+1}\right)<\omega \Rightarrow \mathcal{P}_{n^{2}+1} \subseteq(-\infty, n]$ will hold for some known integer $n$.

Let $\mathcal{T}$ denote the set of twin primes.

## Open Problem 5. Is there a known threshold number of $\mathcal{T}$ ?

Open Problem 5 asks about the existence of a year $t \geqslant 2022$ in which the implication $\operatorname{card}(\mathcal{T})<\omega \Rightarrow \mathcal{T} \subseteq(-\infty, n]$ will hold for some known integer $n$.

## References

[1] Caldwell, C. K.; Gallot, Y. On the primality of $n!\pm 1$ and $2 \times 3 \times 5 \times \cdots \times p \pm 1$, Math. Comp. 71 (2002), no. 237, 441-448. http://doi.org/10.1090/S0025-5718-01-01315-1.
[2] Case, J.; Ralston, M. Beyond Rogers' non-constructively computable function. in: The nature of computation, Lecture Notes in Comput. Sci., 7921, 45-54, Springer, Heidelberg, 2013. http: / / link. springer. com/ chapter/10.1007/978-3-642-39053-1_6.
[3] Factorial prime http://en.wikipedia.org/wiki/Factorial_prime.
[4] Goodman, N. D. The knowing mathematician. Synthese 60 (1984), no. 1, 21-38. http: / /link. springer. com/article/10.1007/BF00485616; reprinted in: Leblanc, H., Mendelson, E., Orenstein, A., Foundations: Logic, Language, and Mathematics, Springer, 1984, 21-38, http://link.springer.com/book/10. 1007/978-94-017-1592-8.
[5] Is $n!+1$ often a prime? http://math.stackexchange.com/questions/853085/is-n-1-often-a-prime.
[6] De Koninck, J.-M.; Luca, F. Analytic number theory: Exploring the anatomy of integers. American Mathematical Society, Providence, RI, 2012.
[7] Křížek, M.; Luca, F.; Somer, L. 17 lectures on Fermat numbers: from number theory to geometry. Springer, New York, 2001.
[8] Lloyd, S. Ultimate physical limits to computation. Nature 406 (2000), 1047-1054. http: / / doi. org/10. 1038/35023282.
[9] PARI/GP online documentation. http://pari.math.u-bordeaux.fr/dochtml/html/Arithmetic_ functions.html.
[10] Reitzig, R. How can it be decidable whether $\pi$ has some sequence of digits? http://cs. stackexchange. com/ questions/367/how-can-it-be-decidable-whether-pi-has-some-sequence-of-digits.
[11] Ribenboim, P. The little book of bigger primes. 2nd ed., Springer, New York, 2004.
[12] Rogers, H. Jr. Theory of recursive functions and effective computability. 2nd ed., MIT Press, Cambridge, MA, 1987.
[13] Sloane, N. J. A. The On-Line Encyclopedia of Integer Sequences A002496, Primes of the form $n^{2}+1$. http: // oeis.org/A002496.
[14] Sloane, N. J. A., The On-Line Encyclopedia of Integer Sequences. A083844, Number of primes of the form $x^{2}+1<10^{n}$. http://oeis.org/A083844.
[15] Tyszka, A. Statements and open problems on decidable sets $\mathcal{X} \subseteq \mathbb{N}$ that refer to the current knowledge on $\mathcal{X}$. J. Appl. Math. Comput. 16 (2022), no. 2, 31-35. http://doi.org/10.4316/JACSM. 202202005.
[16] Wolfram MathWorld Landau's Problems. http://mathworld.wolfram.com/LandausProblems. html.
[17] Yan, S. Y. Number theory for computing. 2nd ed., Springer, Berlin, 2002.
Faculty of Production and Power Engineering University of Agriculture Balicka 116B, 30-149 Kraków, Poland
Email address: rttyszka@cyf-kr.edu.pl


[^0]:    Received: 24.10.2022. In revised form: 24.05.2023. Accepted: 31.05.2023
    2020 Mathematics Subject Classification. 03F55, 11A41.
    Key words and phrases. constructive algorithms, current knowledge, decidable sets, epistemic notions, informal notions, known algorithms, known elements, special primes.

