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Fuzzy Noetherian Module

MANJU VARGHESE1,2 and SHERY FERNANDEZ1

ABSTRACT. P. S. Das [Sivaramakrishna Das, P. Fuzzy groups and level subgroups. J. Math. Anal. Appl. 84
(1981), no. 1, 264–269.] proved that the level subgroups of any fuzzy subgroup of a finite group form a chain. In
this paper we extend it to modules and showed that the level submodules of a fuzzy module also form a chain.
With the help of these results we introduced fuzzy noetherian module for noetherian modules. Some results are
proved for level submodules of any fuzzy module of modules with composition series.

1. INTRODUCTION

In 1965, Zadeh [15] introduced the idea of fuzzy set on a nonempty set. He defined the
fuzzy subset of a nonempty set X as a membership function λ : X → [0, 1]. Different types
of generalizations of abstract mathematical structure into fuzzy context happen after the
introduction of fuzzy subset of a set. In 1971, a milestone in the development of fuzzy
group was laid by Rosenfeld [11]. The level set or a-cut [7] of a fuzzy set λ for a ∈ [0, 1]
is defined as λa = {x/x ∈ X,λ(x) ≥ a}. Das[13] showed that for a finite group, a chain
is formed by the level subgroups of a fuzzy subgroup. In 1975, Negoita and Ralescu [9]
came up with the concept of fuzzy module. After the introduction of the fuzzy module,
many authors have studied fuzzy modules and its properties in their papers like [4], [5],
[8]. Here we have showed that the level submodules of a fuzzy module also form a chain.

The properties of finitely generated submodules were first studied by Hilbert. An R-
module M is Noetherian [3] if the ascending chain of submodules, partially ordered by
inclusion terminates. It is named after the German mathematician Emmy Noether who
was the first one to find the importance of this property. An R-module has a chain of sub-
modules partially ordered by inclusion of finite length, so that no submodules are there
in between consecutive submodules in the chain. Then that R-module has a composition
series. we have studied the composition series using the level submodules of fuzzy mod-
ule of R-module. Also we fuzzified the algebraic concept of noetherian modules to define
the fuzzy noetherian module and some results relating to it.

2. PRELIMINARIES

Definition 2.1. [2] Let R be a ring. A left R-module is a set M together with
(1) a binary operation + on M under which M is an abelian group, and
(2) an action of R on M (that is, a map R×M → M ) denoted by ax, for all a ∈ R and

for all x ∈ M which satisfies
(a) (a+ b)x = ax+ bx, for all a, b ∈ R, x ∈ M
(b) (ab)x = a(bx), for all a, b ∈ R, x ∈ M and
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(c) a(x+ y) = ax+ ay, for all a ∈ R, x, y ∈ M
If the ring R has a unity ′1′ we impose the additional axiom:

(d) 1.x = x, for all x ∈ M

Remark 2.1. Similar to this, a Right R-module can also be defined as the action of R on
M on the right, indicated by xa, for all a in R and all x in M . In this paper, the R-module
is interpreted as the left R-module.

Definition 2.2. [2] Let R be a ring and let M be an R-Module. An R-submodule of M is
a subgroup N of M which is closed under the action of ring elements i.e rn ∈ N, ∀r ∈
R, n ∈ N .

Definition 2.3. [3] Let N be a submodule of an R-module M . Let the quotient abelian
group M/N with addition defined by (x+N) + (y +N) = (x+ y) +N and multiplication
given by a.(x+N) = ax+N , a ∈ R, x, y ∈ M is an R-module. This R-module M/N known
as the quotient(factor) module, under the action of R on M/N (i.e, a map R× M/N → M/N
) gets the structure of an R-module.

Example 2.1.
(1) All additive abelian groups are Z-modules and all subgroups of the group are the

submodules of the Z-module.
(2) If R is any ring then R is an R-module and all ideals of the ring R are the submod-

ules of the R-module R.
(3) Let R = F , a field then every vectorspace over F are F -modules and the subspaces

of the vectorspace are the submodules of F -module.
(4) Z is an Z-module and nZ is a submodule of Z for any n ∈ Z then Z/nZ is a factor

Z-module.

Definition 2.4. [1] The set of proper submodules of M , ordered by inclusion, has a maxi-
mal element called a maximal submodule N of M . A submodule N of M is hence maximal
if and only if (i) N ̸= M and (ii) for each submodule N ′ such that N ⊂ N ′ ⊂ M , either
N = N ′ or N ′ = M .

Definition 2.5. [3] An R-module M is cyclic if M = Rx for some x ∈ M , where Rx =
{ax/ a ∈ R}.

Definition 2.6. [3] M is called a finitely generated R-module if M = M1+M2+ · · ·+Mn,
where each Mi is cyclic i.e Mi = Rxi for some xi ∈ M . If Mi = Rxi for i = 1, 2, . . . , then
the set {x1, x2, . . . , xn} is called a generating set for M .

Proposition 2.1. [3] Let M be an R-module. The following conditions are equivalent
(1) Any non-empty collection of submodules of M has a maximal element.
(2) For any increasing sequence of submodules of M , M1 ⊂ M2 ⊂ M3 ⊂ ...Mn ⊂ ..., there

exists some integer m such that Mk = Mm for all k ≥ m.
(3) Every submodule of M is finitely generated.

Definition 2.7. [3] An R-module M is noetherian if it satisfies any one of the above equiv-
alent conditions.

Example 2.2.
(1) All finite dimensional vectorspaces over a field K are Noetherian K−modules.
(2) Any principal ideal ring is a noetherian R-module.
(3) Every finite abelian groups are noetherian Z-modules.
(4) Let K be a field and x be an indeterminate, then K[x] is a infinite dimensional vec-

tor space over K with basis {1, x, x2, x3, . . . }. Since K[x] is not finitely generated
it is not a noetherian K-module.



Fuzzy Noetherian Module 121

Definition 2.8. [1] A left R-module M ̸=< 0 > is called irreducible if M contains no non-
trivial submodules, whereas a module which contains a non-trivial submodule is called
reducible.

Definition 2.9. [14] Let M be an R-module. A chain of submodules of M , < 0 >= M0 ⊂
M1 ⊂ M2 ⊂ · · · ⊂ Mr = M is called a composition series if for each i ≥ 1, the factor
(quotient) module Mi/Mi−1 is an irreducible R-module.

Definition 2.10. [1] The factor modules Mi/Mi−1 are called the factors of the composition
series. The number of factors is called the length of the composition series.

Example 2.3.
(1) The Z-module Z6 has a composition series of length 2, < 0 >⊂< 2 >⊂< 1 >.
(2) Consider the set of all complex numbers C as an R-module the it has a composition

series of length 2, < 0 >⊂ R ⊂ C.
(3) The n-dimensional vectorspace over a field F is an F -module having composition

series of length n.
(4) Let R = K[x] where K is a field and M = K[x]/< x2 >. Then M has a composition

series < 0 >⊂ < x >/< x2 > ⊂ M .

Theorem 2.1. [1] If M is an R-module which has a composition series, then any two composition
series of M have the same length.

3. FUZZY MODULE

Definition 3.11. [10] Let R be a ring and let M be an R-module, then a fuzzy module on
M is a map λ : M → [0, 1] satisfying the following conditions

(1) λ(m1 +m2) ≥ min{λ(m1), λ(m2)}, ∀m1,m2 ∈ M
(2) λ(−m1) = λ(m1) ∀m1 ∈ M
(3) λ(rm1) ≥ λ(m1) ∀m1 ∈ M, r ∈ R
(4) λ(0) = 1

Example 3.4.
(1) Consider R = M = Z. Define λ : Z → [0, 1] by

λ(m) =

{
1, if m ∈ 2Z
1/2 if m ∈ Z \ 2Z

(2) Consider R = M = Z. Define λ : Z → [0, 1] by

λ(m) =


1, if m ∈ 4Z
1/2 if m ∈ 2Z \ 4Z
1/4 if m ∈ Z \ 2Z

(3) Consider R = Z, M = Z6 Define λi : Z6 → [0, 1], i = 1, 2, . . . by

λ1(m) =


1, if m ∈ {0}
1/2 if m ∈ {2, 4}
1/3 if m ∈ {1, 3, 5}

λ2(m) =


1, if m ∈ {0}
1/2 if m ∈ {3}
1/3 if m ∈ {1, 2, 4, 5}
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λ3(m) =

{
1, if m ∈ {0, 2, 4}
1/2 if m ∈ {1, 3, 5}

λ4(m) =

{
1, if m ∈ {0, 3}
1
2 if m ∈ {1, 2, 4, 5}

λ5(m) = 1, ∀m ∈ Z6

Definition 3.12. [12], [5] Let µ and λ be two fuzzy modules of an R-module M , then λ is
called a fuzzy submodule of µ if λ ⊆ µ ( i.e λ(m) ≤ µ(m) ∀m ∈ M )

Example 3.5. In the preceding Example 3.4, we have λ2 ⊆ λ4 ⊆ λ5 and λ1 ⊆ λ3 ⊆ λ5.

Lemma 3.1. [12], [5] Let λ be a fuzzy subset of an R-module M then the level subset λt is a
submodule of M for all t ∈ [0, 1] if and only if λ is a fuzzy module of M .

Definition 3.13. [12], [5] Let M be an R-module and λ be a fuzzy module of M , then the
submodules λt, t ∈ [0, 1] are called the level submodules of λ.

Lemma 3.2. Let M be an R-module and λ be a fuzzy R-module of M . If t1, t2 ∈ [0, 1], and
t1 < t2 then λt2 ⊆ λt1 .

Proof. Given λ is a fuzzy module on R-module M and t1 < t2 ∈ [0, 1] then clearly
λt2 = {m ∈ M / λ(m) ≥ t2} ⊆ {m ∈ M / λ(m) ≥ t1} = λt1 □

Lemma 3.3. Let M be an R-module and λ be a fuzzy module of M . The level submodules λt1

and λt2 (with t1 < t2) of λ are equal if and only if there does not exists an m ∈ M such that
t1 ≤ λ(m) < t2 .

Proof. First assume that λt1 = λt2 . Now suppose that there exists an m ∈ M such that
t1 ≤ λ(m) < t2, then λt2 ⊊ λt1 , as m ∈ λt1 and m /∈ λt2 which is a contradiction to
λt1 = λt2 .
Conversely suppose that there does not exists an m ∈ M such that t1 ≤ λ(m) < t2. As
t1 < t2, λt2 ⊆ λt1 . Now

λt1 = {m ∈ M / λ(m) ≥ t1}
= {m ∈ M / λ(m) ≥ t2}
= λt2

since there does not exists m ∈ M such that t1 ≤ λ(m) < t2. Thus λt1 = λt2 □

Remark 3.2. If t1, t2 ∈ Im(λ) and t1 < t2 then λt2 ⊊ λt1 .

Lemma 3.4. Let λ be a fuzzy module of an R-module M and t, s ∈ Im(λ), then λt = λs if and
only if t = s.

Proof. If t = s then clearly λt = λs.
Now let λt = λs since t, s ∈ Im(λ), there exists m1,m2 ∈ M such that λ(m1) = t and
λ(m2) = s. So m1 ∈ λt and m2 ∈ λs But since λt = λs, m1,m2 ∈ λt and λs ⇒ t =
λ(m1) ≥ s and s = λ(m2) ≥ t
⇒ t = s. □

Theorem 3.2. Let M be an R-module and λ be a fuzzy module on M . If Im(λ) = {ti ∈
[0, 1]/ λ(x) = ti, for some x ∈ M} then the only level submodules of λ are {λti}, i = 1, 2, . . . .



Fuzzy Noetherian Module 123

Proof. By Lemma 3.1 λt is a submodule of M ∀t ∈ [0, 1]. Since λ is a fuzzy module of M ,
we have λ(0) = 1. So λ1 is the smallest level submodule of λ and contains {0}.
If t < 1 then there are three cases.
Case (i) There doesnot exists a ti ∈ Im(λ) such that t ≤ ti < 1 then by Lemma 3.3 λt = λ1.
Case(ii) ti < t < tj where ti, tj ∈ Im(λ), t /∈ Im(λ), then by the definition of level
submodules and Lemma 3.3, we get λtj = λt ⊂ λti .
Case (iii) 0 ≤ t < tr where tr is the least element in Im(λ) then λtr = M = λt.
So if we consider any t ∈ [0, 1], then λt = λti for some ti ∈ Im(λ). Hence all the level
submodules of λ are of the form {λti}, i = 1, 2, . . . . □

Lemma 3.5. Let M1 ⊂ M2 ⊂ · · · ⊂ Mn ⊂ . . . be an ascending chain of submodules of an
R-module M then the fuzzy subset λ : M → [0, 1] defined by

λ(m) =



1 if m ∈ M1

1/2 if m ∈ M2 \M1

1/3 if m ∈ M3 \M2

...
1/n if m ∈ Mn \Mn−1

...

(3.1)

is a fuzzy module on M .

Proof. To prove λ is a fuzzy module on M , we need to prove that
(1) λ(0) = 1
(2) λ(m1 +m2) ≥ min{λ(m1), λ(m2)}, ∀m1,m2 ∈ M
(3) λ(rm) ≥ λ(m) ∀m ∈ M, r ∈ R

From the definition of λ , λ(m) = 1 ∀m ∈ M1 and M1 is the smallest submodule of M
in the ascending chain of submodules of M , So λ(0) = 1.
Consider m1,m2 ∈ M ⇒ either (I) m1,m2 ∈ Mi, for some i ∈ Z+ or (II) m1 ∈ Mi and
m2 ∈ Mj for j < i ∈ Z+ (m2 ∈ Mi and m1 ∈ Mj for j < i ∈ Z+)
When m1,m2 ∈ Mi, for some i ∈ Z+, there are the following cases

(1) m1,m2 ∈ Mi \Mi−1, for i ∈ Z+

(2) m1 ∈ Mi \Mi−1 and m2 ∈ Mj , for some j < i ∈ Z+

(3) m1,m2 ∈ Mj \Mj−1, for j < i ∈ Z+

(4) m1 ∈ Mj \Mj−1 and m2 ∈ Mk, for some k < j < i ∈ Z+

Case(1)
Consider m1,m2 ∈ Mi \Mi−1, for i ∈ Z+ then λ(m1) = λ(m2) = 1/i.
So min{λ(m1), λ(m2)} = 1/i.
Now since m1,m2 ∈ Mi \ Mi−1 and Mi is a submodule of M , m1 + m2 ∈ Mi ⇒ either
m1 +m2 ∈ Mi \Mi−1 or m1 +m2 ∈ Mj for some j < i ∈ Z+

In both cases λ(m1 +m2) ≥ 1/i from the equation 3.1
So λ(m1 +m2) ≥ min{λ(m1), λ(m2)} ∀m1,m2 ∈ Mi \Mi−1

Case(2)
Consider m1 ∈ Mi \ Mi−1 and m2 ∈ Mj , for some j < i ∈ Z+ then λ(m1) = 1/i and
λ(m2) ≥ 1/i
⇒ min{λ(m1), λ(m2)} ≥ 1/i
As Mj and Mi are submodules of R-module M and Mj ⊂ Mi, we have m1 +m2 ∈ Mi, So
λ(m1 +m2) ≥ 1/i from the equation 3.1
So we get λ(m1 +m2) ≥ min{λ(m1), λ(m2)} ∀m1 ∈ Mi \Mi−1 and m2 ∈ Mj
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Case(3)
Consider m1,m2 ∈ Mj \Mj−1, for j < i ∈ Z+, then clearly it is similar to Case(1) and we
get λ(m1 +m2) ≥ min{λ(m1), λ(m2)} ∀m1,m2 ∈ Mj \Mj−1

Case(4)
Consider m1 ∈ Mj \Mj−1 and m2 ∈ Mk, for some k < j < i ∈ Z+, then clearly it is similar
to Case (2) and we get λ(m1 +m2) ≥ min{λ(m1), λ(m2)} ∀m1 ∈ Mj \Mj−1 and m2 ∈ Mk

Now When m1 ∈ Mi and m2 ∈ Mj (m2 ∈ Mi and m1 ∈ Mj) for some j < i ∈ Z+

then clearly m1,m2 ∈ Mi, Since Mj ⊂ Mi as j < i. So from the above cases we get
λ(m1 +m2) ≥ min{λ(m1), λ(m2)}
∴ λ(m1 +m2) ≥ min{λ(m1), λ(m2)} ∀m1,m2 ∈ M

Now consider m ∈ M and r ∈ R
m ∈ M ⇒ m ∈ Mi for some i ∈ Z+ then either m ∈ Mi \ Mi−1 or m ∈ Mj for some
j < i ∈ Z+

If m ∈ Mi −Mi−1 then λ(m) = 1/i and rm ∈ Mi as Mi is a submodule of M, So we have

λ(rm) ≥ 1/i

= λ(m)

So λ(rm) ≥ λ(m) ∀m ∈ Mi \Mi−1 and r ∈ R
Now if m ∈ Mj for some j < i ∈ Z+ then either m ∈ Mj \ Mj−1 or m ∈ Mk for some
k < j < i ∈ Z+

If m ∈ Mj \Mj−1 then λ(m) = 1/j and rm ∈ Mj as Mj is a submodule of M, So we have

λ(rm) ≥ 1/j

= λ(m)

So λ(rm) ≥ λ(m) ∀m ∈ Mj \Mj−1 and r ∈ R
If m ∈ Mk then again the process repeats and so we get λ(rm) ≥ λ(m) ∀m ∈ M and r ∈ R.

∴ λ is a fuzzy module of M . □

Theorem 3.3. Every submodule N of an R-module M can be written as a level submodule of
some fuzzy module λ of R-module M .

Proof. Let N be a submodule of the R-module M . Define λ : M → [0, 1] by

λ(m) =


1 if m ∈ {0}
t if m ∈ N \ {0}
0 if m ∈ M \N

where 0 < t ≤ 1
Now consider the ascending chain < 0 >⊆ N ⊆ M of submodules of M . Then by lemma
3.5 λ is a fuzzy module on M . Also λt = N , So N is written as the level submodule of the
fuzzy module λ on M . Hence the result. □

Theorem 3.4. Let λ be a fuzzy module on R-module M and let 1 = t0 > t1 > t2 > · · · > tn ≥ 0
be the images of λ with level cardinality n + 1, then the level submodules of λ form a chain of
submodules of R-module M of length n.

Proof. By Lemma 3.3, ti < tj ⇒ λtj ⊊ λti , for ti, tj ∈ Im(λ). Also the level submodules of
the fuzzy R-module λ are submodules of M by lemma 3.1. So for 1 = t0 > t1 > t2 > · · · >
tn ∈ Im(λ), λt0 ⊂ λt1 ⊂ λt2 ⊂ · · · ⊂ λtn = M form a chain of submodules of R-module
M of length n. □
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Theorem 3.5. Let λ be a fuzzy module on R-module M with level cardinality n + 1, 1 = t0 >
t1 > t2 > · · · > tn ≥ 0 ∈ Im(λ) and if the factor level submodules λti/λti−1

is irreducible for
i = 1, 2, . . . , n then λ has a composition series of level submodules of length n.

Proof. By Lemma 3.4 for 1 = t0 > t1 > t2 > · · · > tn ∈ Im(λ), λt0 ⊂ λt1 ⊂ λt2 ⊂
· · · ⊂ λtn = M form a chain of submodules of R-module M of length n. Given the
factor modules λti/λti−1

of the ascending chain λt0 ⊂ λt1 ⊂ λt2 ⊂ · · · ⊂ λtn = M of
level submodules of the fuzzy R-module λ is irreducible for i = 1, 2, . . . , n then by the
definition of composition series of an R-module, it forms a composition series of the R-
module M . □

Remark 3.3. |λ| denote the level cardinality of the fuzzy R-module λ on R-module M .

Theorem 3.6. Let M has a composition series of length n and if λ is a fuzzy module on module
M then |λ| ≤ n+ 1 and if |λ| = n+ 1 then the chain of level submodules of fuzzy R-module λ of
M form a composition series of M .

Proof. We know that corresponding to each submodule of M there exists a level submod-
ule of some fuzzy R-module λ of M by theorem 3.3. If possible λ is a fuzzy R-module of
M with level cardinality > n+ 1, say n+ 2 then t0 = 1 > t1 > · · · > tn+1 be the n+ 2 dis-
tinct values of Im(λ) then by lemma 3.3 , λt0 ⊊ λt1 ⊊ λt2 ⊊ . . . λtn ⊊ λtn+1

is an ascending
chain of level submodules of λ of length n+1. By lemma 3.1 each level submodule of λ is
a submodule of M . ∴ there exist an ascending chain of submodules of M of length n+ 1,
which is a contradiction. So every fuzzy R-module on M has level cardinality ≤ n+ 1.
Now let λ be a fuzzy R-module of M with level cardinality n+ 1, then as above the chain
of level submodule is a chain of submodule of M of length n. By theorem 2.1 the chain of
level submodules of λ on M of length n form a composition series of M . □

Theorem 3.7. If every fuzzy module λ on an R-module M has finite level cardinality, then M is
noetherian.

Proof. Let λ be a fuzzy R-module of M with finite level cardinality. Corresponding to
each fuzzy R-module λ on M , the level submodules form a chain of submodules of M by
lemma 3.3.
If possible assume that M is not noetherian then there exists a chain of submodules of M
which doesnot terminate, say M1 ⊂ M2 ⊂ · · · ⊂ Mn ⊂ . . . then by lemma 3.5 we can
form a fuzzy module on M with cardinality not finite, which is a contradiction. Hence the
result. □

Remark 3.4. Let N be a submodule of an R-module M and let λ be a fuzzy module on M
then ν = λ|N is a fuzzy module on N , where λ|N is the restriction of the domain M to the
submodule N .

Theorem 3.8. Let M be a Noetherian R-module, then corresponding to each ascending chain
of submodules {0} = M1 ⊆ M2 ⊆ M3 ⊆ . . . of M which terminates at Mr, for some r ∈ Z+,
there exists fuzzy R-modules νi on Mi, i = 1, 2, 3, . . . and an ascending chain of fuzzy submodules
λ1 ⊆ λ2 ⊆ . . . defined on M such that it terminates at λr, r ∈ Z+ and νi = λi|Mi, i = 1, 2, . . . .

Proof. Suppose {0} = M1 ⊆ M2 ⊆ M3 ⊆ . . . be an ascending chain of submodules of M
which terminates at Mr.
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Define the fuzzy modules νk : Mk → [0, 1] by

νk(m) =



1 if m ∈ M1

1/2 if m ∈ M2 \M1

1/3 if m ∈ M3 \M2

...
1/k if m ∈ Mk \Mk−1, k=1,2, . . . , r

and νk(m) = νr(m) ∀k ≥ r, as the ascending chain of submodules of M terminates at Mr

(i.e Mr = Mr+1 = Mr+2 = . . . )
Now define λk : M → [0, 1] by

λk(m) =

{
νk(m) ∀m ∈ Mk

0 ∀m ∈ M \Mk

k = 1, 2, . . . , r then λ1 ⊆ λ2 ⊆ . . . is an ascending chain of fuzzy submodules on M and
terminates at λr, since λr = λr+1 = λr+2 = . . . by definition. and νi = λi|Mi, i =
1, 2, . . . , r and also νk = νk+i|Mk, k = 1, 2, . . . r, i = 1, 2, . . .
Hence the theorem. □

Definition 3.14. The fuzzy module λr of the noetherian R-module M , which terminates
at r in the theorem 3.8, is called a fuzzy noetherian module of M with level cardinality r.

Example 3.6. Consider the four dimensional vectorspace M = Q(
√
2,
√
3) over Q

with basis {1,
√
2,
√
3,
√
6} as a Q-module, and the ascending chain of submodules of

Q(
√
2,
√
3) is {0} = M1 ⊂ Q = M2 ⊂ Q ⊕ Q

√
2 = M3 ⊂ Q ⊕ Q

√
2 ⊕ Q

√
3 = M4 ⊂

Q(
√
2,
√
3) = M . As in theorem 3.8, the corresponding fuzzy modules on Q(

√
2,
√
3) are

(1)

λ1(m) =

{
1 if m ∈ M1

0 if m ∈ M \M1

(2)

λ2(m) =


1 if m ∈ M1

1/2 if m ∈ M2 \M1

0 if m ∈ M \M2

(3)

λ3(m) =


1 if m ∈ M1

1/2 if m ∈ M2 \M1

1/3 if m ∈ M3 \M2

0 if m ∈ M \M3

(4)

λ4(m) =



1 if m ∈ M1

1/2 if m ∈ M2 \M1

1/3 if m ∈ M3 \M2

1/4 if m ∈ M4 \M3

0 if m ∈ M \M4
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(5)

λ5(m) =



1 if m ∈ M1

1/2 if m ∈ M2 \M1

1/3 if m ∈ M3 \M2

1/4 if m ∈ M4 \M3

1/5 if m ∈ M \M4

then clearly we have λ1 ⊂ λ2 ⊂ λ3 ⊂ λ4 ⊂ λ5 is an ascending chain of fuzzy sub-
modules of Q(

√
2,
√
3) which terminates at λ5 and so the level cardinality of the fuzzy

noetherian module is 5. Similarly if we consider any other chain of submodules of M ,
then the proper submodules in that chain are any one of the submodules Mi, i = 1, 2, 3, 4
and the fuzzy submodules are defined accordingly as in the above cases.

4. CONCLUSION

In this paper, we fuzzified the algebraic concept of noetherian modules in order to
define the fuzzy noetherian module and some related results. P. S. Das [13] proved that
there is a one-one correspondence between the subgroups of a group and the equivalence
classes of level subgroups of the collection of all fuzzy subgroups of the group. we are
trying to extend this result in the case of an R-module in our future work.
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