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Fusion frame and its alternative dual in tensor product of
Hilbert spaces

PRASENJIT GHOSH! and T. K. SAMANTA?

ABSTRACT. We study fusion frame in tensor product of Hilbert spaces and discuss some of its properties. The
resolution of the identity operator on a tensor product of Hilbert spaces is being discussed. An alternative dual
of a fusion frame in tensor product of Hilbert spaces is also presented.

1. INTRODUCTION

Fusion frame was investigated by P. Casazza and G. Kutyniok [2]. They define frames
for closed subspaces of a given Hilbert spaces with respect to the orthogonal projec-
tions. In frame theory, fusion frame is a one kind of its generalization and it has been
used in coding theory, data processing, signal processing and many other fields. Infact,
the fusion frame theory is more elegent due to complicated relations between the struc-
ture of the sequence of weighted subspace and the local frames in the subspace. In fusion
frame, the atomic resolution of the identity operator on Hilbert space was studied by M. S
Asgari and Amil Khosraki [1]. They present a reconstruction formula and establish some
useful results about resolution of the identity operator.

The basic concepts of tensor product of Hilbert spaces were described by S.Rabin-
son [11]. In Tensor Product of Hilbert spaces, the ideas of frames and Bases were stud-
ied by A.Khosravi and M. S. Asgari [9]. Reddy et al. [12] also studied the frame in tensor
product of Hilbert spaces and presented the frame operator on tensor product of Hilbert
spaces. The concepts of fusion frames and g-frames in tensor product of Hilbert spaces
were introduced by Amir Khosravi and M. Mirzaee Azandaryani [10].

In this paper, fusion frame in tensor product of Hilbert spaces is developed and dis-
cuss a relationship among fusion frames in Hilbert spaces and their tensor products. We
shall verify that in tensor product of Hilbert spaces, an image of a fusion frame under
a bounded linear operator will be a fusion frame if the operator is invertible and uni-
tary. The resolution of the identity operator on a tensor product of Hilbert spaces is pre-
sented. In tensor product of Hilbert spaces, we study an alternative dual of a fusion frame
and see that the canonical dual of a fusion frame is also an alternative dual. Finally, we
establish that an alternative dual of a fusion frame is a fusion frame in tensor product of
Hilbert spaces.

Throughout this paper, we consider (H, (-, -),) and (K, (-, -),) be two separable
Hilbert spaces. The identity operators on H and K are denoted by Iy and Ik respec-
tively. B(H , K) isthe collection of all bounded linear operators from H to K. Particularly,
the space of all bounded linear operators on H is denoted by B ( H ). Py is considered to
be the orthogonal projection onto the closed subspace V. C H.{V;},.; and {W; },_;
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are the collections of closed subspaces of H and K, where I, J are index sets. Consider
the space

P({Vitic;) = {{fi}iel c fi € V5, Z ||fz||12 < OO}
with inner product defined by -
({fitier. {giticr) = Z, (firgih-
i€
It is easy to verify that 12 ({V;}, ;) is a Hilbert space with respect to the above inner
product [1]. In the similar way, we can define the space [? ( {Witics )

2. PRELIMINARIES

Let T be a bounded linear operators on H.Then T* denotes the adjoint of 7' and for
a closed subspace V' C H, 'V denotes the closure of V.

Theorem 2.1. [6] Let T € B(H ) and V' bea closed subspace of H. Then Py T* = Py T* Py.
If in particular, T is an unitary operator (i.e T*T = Iy ), then Pz T = T Py.

Theorem 2.2. [7] Let S(H ) be the set of all self-adjoint operators on H and let T, S €
S(H). Wesay that T < S if

Definition 2.1. [2] Let { v; }, . ; be a family of weights, i.e., v; > 0 forall i € I. Then the
family V' = {(V;, v;) : @ € I} issaid to be a fusion frame for H if there exist constants
0 < A < B < oo such that

2.1) ALFIZ <Y w2 IPv (A <BIfIT VfeH.

iel
We call A, B the fusion frame bounds. If the family V' satisfies only right inequality of
(2.1), then it is called a fusion Bessel sequence in H with bound B.

Definition 2.2. [2] Let V' = {(V;, v;) }, . ; be a fusion Bessel sequence in i with bound
B. The operator Ty : 1% ({V;},.,) — H defined as

Tv ({fi}icr) = Z vifi Y{fiticr € 1>({Vitics)
iel
is called the synthesis operator and the operator given by
Ty H =12 ({Vitic;), v () ={viPv.(f)}ie; Yf€H,
is called analysis operator. The operator Sy, : H — H defined as
Sv(f)=TvTy(f) =Y v’ Pv(f)Yfe€H,
iel
is called fusion frame operator.

Remark 2.1. [2] Let V' be a fusion frame with bounds A, B. Then from (2.1),
(Af, < (Sv(f), fhs(Bf, f) VfeEH

The operator Sy is bounded, self-adjoint, positive and invertible. Now, according to the
Theorem (2.2), we can write, AIy < Sy < By and this gives B~ 11y < S‘;l <
AT H-
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Definition 2.3. [2] Let V = {(V;,v;)},.; be afusion frame for H.Then { (S Vi, v; ) }
is called the canonical dual fusion frame of V.

Theorem 2.3. [6] Let V' = {(Vi, vi)}, o, bea fusion frame for H with bounds A, B and
Sy be the corresponding frame operator. Then the canonical dual fusion frame of V' is a fusion

2 BlSv® | syt

iel

frame with bounds

1Sy 112 1Sy |

Remark 2.2. [6] A reconstruction formula on H with the help of canonical dual fusion
frame is given by

f= Z ngsvflvisvflpvi(f) VfeH.
il
Definition 2.4. [6] Let V' = {(V;, v;)},.; be a fusion frame for H and Sy be the

corresponding frame operator. Then a fusion Bessel sequence V' = {(V)',v/)}, ., is
said to be an alternative dual of V' if

f=> wiv]Py; Sy Py, (f) VfeH
iel
Definition 2.5. [2] A family of bounded operators {T;}, ., on H is called a resolution
of identity operator on H ifforall f € H,wehave f = > T;(f), provided the series
i€l

converges unconditionally for all f € H.

There are several ways to introduced the tensor product of Hilbert spaces. The tensor
product of Hilbert spaces H and K is a certain linear space of operators which was rep-
resented by Folland in [5], Kadison and Ringrose in [8].

Definition 2.6. [12] The tensor product of Hilbert spaces H and K is denotedby H ® K
and it is defined to be an inner product space with respect to the inner product

(feg. t'®g)=(ff'h{g. 9 VI el &gy €K
Thenormon H ® K is defined by

(2.2) Ifogll=1Iflllglle VfeH&gekK

The space H @ K is complete with respect to the above inner product. Therefore, the
space H ® K is an Hilbert space.

For Q@ € B(H) and T € B (K ), the tensor product of operators () and T is denoted
by @ ® T and is defined as

(Q®T)A=QAT* VY Ac H® K.

Theorem 2.4. [5,13] Let Q, Q' € B(H ) and T, T' € B(K ). Then

(I) QT eB(HeK)ad [QeT| = |Q[|T]

(I (QeT)(feg)=Q((f)®T(g) foral f € H, g€ K.

N (QeT) (R eT') =(QQ") @ (TT").

(IV) Q®T isinvertible ifand only if Q and T are invertible, in which case (Q @ T) ™" =
(Q'eT ).

V) (QeT) =(Q eT").

(VI) Let f, f’ € H\ {0} and g, 9’ € K\ {0}.If f @ g = [’ ® g’, then there exist
constants a and b with ab = 1 suchthat f = af’' and g = bg’.
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3. FUSION FRAME IN TENSOR PRODUCT OF HILBERT SPACES

In this section, fusion frame in the Hilbert space H ® K have been discussed and
some results associated to fusion frame in H ® K are likely to be established. At the end,
we discuss the relationship among the resolution of the identity operator on H ® K and
resolutions of the identity operators on H and K, respectively.

Definition 3.7. Let {v;},.; and {w;}, , be two families of positive weights i.e.,
v, >0Vielandw; >0Vje Jand {V; ® W, : (i,5) € I x J} beafamily of
closed subspaces of H ® K.Then the family V@ W = {(V;® Wj, viw;)}, ; is called
a fusion frame for H ® K, if there exist 0 < A < B < oo such that

2
Al fogll* <> viw! |Pvew, (fog)|  <Bllfeg|® Vfogec Ho K,
2%
where Py, gw, is the orthogonal projection of H ® K onto V; ® W;. The constants A

and B are called the frame bounds. If A = B then it is called a tight fusion frame for
H ® K.If the family V' ® W satisfies the inequality

2
S wtw! | Prow, (f@g)|| " <Blfegl®> Vfoge HoK,
2%

then it is called a fusion Bessel sequence in H ® K with bound B.

Definition 3.8. For i € I and j € J, define the space [? ({V; @ W, })

= {fi®g;}: fi®wg; eVie W, and Y |fi®g;lI* < oo

2%

with inner product

(2%]

=2 (fi Fi (95,950, = (Z <fi,f;>1> > (95:95),

iel jed
= <{fi}iel ) {fi/}iel>lz({vi}iel) <{gj}jej ) {9; }j€J>l2({Wj}.€J).

It is easy to verify that the space 1% ({V; @ W; }) is an Hilbert space with respect to the
above inner product.

Remark 3.3. Since {Vi},c;, {W;},.,; and {V; ® W;}, . are the families of closed
subspaces of H, K and H ® K respectively, it is easy to verify that Py, gw, = Py, ®
Pw,.

For the remaining part of this paper, we denote the collections { (V;, vi )},
{(Wjw;)}ep {(Vi@ Wy viw;)}, ;and {(V @ Wi vjwj)}, by V.W, V@
W and V' ® W', respectively.

Theorem 3.5. Let V and W be the families of weighted closed subspaces in H and K, respec-
tively. Then V and W are fusion frames for H and K ifand only if V' ® W is a fusion frame
for H® K.
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Proof. First we suppose that V' and W are fusion frames for H and K. Then there exist
positive constants A, B and C, D such that

(3.3) AIFIT < S w2 IPv(HIE<BIfIE Vel
1€l
2
(3.4) Cllgly < w2 Pw,(9)]l, <Dlgll; Vg€ K.
jed

Multiplying (3.3) and (3.4), and using the definition of norm on H ® K, we get

ACIFIE llglly < <Zv¢2||Pvi(f)12> Sow || Pw, (), | <BDISIE I9lls

iel jeJ
2
= AC | f®gl® <> viwi Py, (I | Pw, (9)], <BDIf gl
%7
2
= AC || f@g|® <Y viwi||[Pv.(f)® Pw,(g)]|" < BD|f®gl|*
@7
Therefore, forall f ® ¢ € H ® K, we have
2
AC|fwgll* <Y viw? |[(Py, ® Pw,) (fog)||><BD|f®gl|’
ij
2
= AC|If@g|® <Y viwi|[Pvow, (fog)|  <BD|f®g|*
%7
This shows that V' @ W is a fusion frame for H ® K with bounds AC and B D.

Conversely, suppose that V' @ W is a fusion frame for H @ K withbounds A and B.
Then, foreach f ® g € H ® K — {6 ® 0}, we have

Alfogl? <Y viw? | Prew, (fog)|° <BIfo gl

oy
2 2 2 2 2
= AfITNgls < viwd [Py (f)® Pw, (9)||” < BIfITllgll3
%7
2
= Al fI7 gl < <vapvi(f)||12> Sowl | Pw, (o), | <BIFIL gl
iel jeJ

Since f ® ¢ isnon-zero vector, f and ¢ are also non-zero vectors and therefore
2 2
> v | Pv.(f); and ZG:J w? || Pw, (g) ||, arenon-zero.
J

i€l
Allglls 2 2 2 Blgls 2
s 11T <D o2 1Py (N)If < A PAR
> wf||ng(g)H2 iel > uf HPWG(Q)HQ
jEJ jeJ
= AU < Y v IPv (AT < Bl fIl Y € H,
i€l
A 2 B 2
where A, = 5 g ll3 5 and B, = 5 lglls 5. This shows that
> wi | Pw, (9) |, > wi [ Pw, (9) |,
jed jeJ

V is a fusion frame for H. Similarly, it can be shown that W is a fusion frame for K. 0O

Now, we validate this theorem by considering the following example.
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3.1. Example. Let H = R and {e, e, €3} be an orthonormal basis for H.Suppose
that Vi, = Span {e2,e3}, Vo = Span {e1,es} and V5 = Span {e; } with v; = 1,
for i = 1, 2, 3.Now, forany f = (f1, f2, f3) € H, wehave

3

Sl PyfI? =2(f1+ f3) + f3

i=1

Thus,

3
1A% < > wf IPv FIZ < 20f11% Ve H

i=1

Hence, {(V;, 1) }f: , is a fusion frame for H with bounds 1 and 2.

Next, we consider the Hilbert space K = R? and {e1, €2} be an orthonormal ba-
sis for K.Consider W; = Span {e1,2e2}, Wy = Span {es} with w; = 1, j =
1, 2. Thus, forany g = (g1, g2) € H, we have

2
2
Y. wil|Pwg]” =gt + 593
j=1
Thus, { (W}, 1)};21 is a fusion frame for K with bounds 1 and 5. Therefore, by The-

orem 3.5, {(V; @ W;, 1)}. . is a fusion frame for H ® K = R% with bounds 1 and
10.

]

Remark 3.4. Let V ® W be a fusion frame for H ® K. According to the definition (2.2),
the corresponding frame operator Sy gw : H ® K — H ® K is given by

Svew (f®@g) =Y viw!Pyaw, (f®g) Vf®gec H®K
4]
Theorem 3.6. Let Sy, Sw and Sy gw be the corresponding frame operators for the fusion
frames V, W and V. @ W, respectively. Then Sy gw = Sv ® Sw and S;;@W =
Syt e Syt

Proof. Foreach f ® g € H ® K, we have

Svew (f®g) =Y viw!Pyvaw, (f®g)
o
=Y viw? (Py, ® Pw,) (f®g)
i

=> wiw? (Py,(f)® Pw,(g))

i, J
— (vapvi (f)) @Y wiPw, (9)
iel jedJ

=Sv(f) ® Sw(g)=5v&Sw(f & g)

This implies that Sy gw = Sy ® Sw. Since Sy and Sy are invertible, by (IV') of the
Theorem (2.4), it follows that Sy, Ly, = Sy ' ® St a

Theorem 3.7. Let V and W be fusion frames for H and K with frame bounds A, B and
C, D having their corresponding fusion frame operators Sy and Sy, respectively. If Ty and
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T are invertible and unitary operators on H and K, respectively then the family given by A =
(T @ T2) (Vi @ Wy ), viwj }, ; isafusion frame for H @ K.

Proof. Since the operators 7'y and T are invertible, by (IV) of the Theorem (2.4), T; ®
Ty is invertible and (T), ® Ty) " = (T7 ' ® Ty ). Also, by Theorem (2.1), for any
i€l and j € J, we get

(3.5) 1Py, T ()Nl < 177 [ Pryv, (f) Iy YV f € H, and

(3.6) | Pw, T3 (9) ||, < 1751 || Praw, (9) |, Y9 € K.

Again, since T'; and T’y are invertible, for each f € H and g € K, we obtain

G7) Il < | (10" $(9) -

S & gl < | (751

Now, foreach f ® ¢ € H ® K, using Theorem (2.4), we get

S vrw? | P ar (view,) (F @ 9) | =Y v} wl|| Pz, viaraw,) (f @ 9|

] 2%

=> v}w? || (Pr,v, ® Pryw,) (f ® 9)||2 [ by note (3.3) |

]

38) = (Zv? ||PT1vi<f>||f> (Z w? ||PT2w_,.<g>||§) [ using (2.2) ]

iel jeJ

el jeJ

zM(Z o3 || Py, (T f |1> (Zw2 | Pw, T;g>||§) [by (3.5) & (3.6) |

AC . . .
> W 1T (I TS (g) |l [since V, W are fusion frames ]
1 2
AC
> I71IE gl by 3D
102 12
(RSN R R T i i Ko
AC

= : — Ifegl’
1Ty @ Ta)* | (T @ T2) ™|

On the other hand, since 7y and T are unitary operators, again by Theorem (2.1),
PT1ViT1 = T1PV1. and PTQWJ' T, = TQPWj.Then, for all f®g € H® K, we
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have

Sovtw? | Perer(view,) (f @ 9)|
i

= <Z v} ||PT1w(f)||12> Zw? HPTQW]-(Q)H; [by (3.8) ]

iel jeJ

:<Z”?HT1PW(T11f)||12> S w? |12 Pu, (751 4) |

iel jedJ

SENR A (Z ot || Py (THf)Hf) > wilPw (T519) |z
el jed
< BD|Ty|? || T2]? HTfl(f)H? HT{l(g)Hz2 [ since V, W are fusion frames |

IN

BD T2 1T |7 2 Ts 1P A IE g3

2 —1? 2
=BD|T: @ T H(T1@3T2) " If® gl

Hence, A is a fusion frame for H @ K. O

Theorem 3.8. The corresponding fusion frame operator for the fusion frame A is given by
(Th @ T2) Svew (Th @ T2)

Proof. Foreach f ® ¢ € H ® K, we have

ZUU}P(T1®T2)(V®W) f®g) ZUU} (Pr,v, @ Pryw, ) (f® g)
ij

= (Z UEPTlv,;(f)> ® (Z w?PTzwj(g))
iel jeJ
= <Z valpw(Tl—lf)> ® (Z w? TQPWj(Tglg)) [ by Theorem (2.1) |

iel jed
=T15v(Tf1(f))®T25w( > (9))
=(T1 ®T2) (Sy @ Sw) (Ty ®T ") (f ® g) [ by Theorem (2.4) ]
= (T1 ®T2) Svew (T1 ® T2) "' (f®g).

This shows that (77 ® T2) Syew (T1 @ T2) ! is the corresponding fusion frame op-
erator for A. |

Definition 3.9. A family of bounded operators {7; ® U; }, ; on a tensor product of

Hilbert space H ® K is called a resolution of the identity operator on H ® K, if for
all f ® g € H® K,wehave

feg=Y (TioU)(fog)

2%

provided the series converges unconditionally forall f ® ¢ € H ® K.
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Proposition 3.1. If the families of bounded operators {T; }, . ; and {U;}, . ; on H and K
are the resolutions of the identity operator on H and K, then {T; ® U; }, ; is a resolution of
the identity operator on H @ K.

Proof. Since {T;},.; and {U;},_, are the resolutions of the identity operator on
H and K, respectively, we have

F=YT(f) VfeHand g= > Uj(g) Vg€ K.

iel jeJ

Then, forall f ® g € H ® K, we have

f®g<ZE(f)>® > Uilg) ZT@U (f®g).

iel jeJd

This completes the proof. O

Remark 3.5. Let V' and W be fusion frames for H and K with their associated frame
operators Sy and Sy, respectively. By reconstruction formula we can write

f=> viS; Py, (f) VfeHand g =) w;Sy'Pw,(g) Vg € K.
i€l jeJ
Then it is easy to verify that
fog=Y viwiSygwPreow (f®g)Vf®gecHoK.
2%}

This shows that the family of operators {v?w? Sy’ é w Pvi o w, }1 i is resolution of the
identity operatoron H ® K. '

Theorem 3.9. Let V and W be fusion frames for H and K with frame bounds A, B and C, D
having their corresponding fusion frame operators Sy and Sy, respectively. Then the family
{v?w? (T, ® U, )}Z p is a resolution of the identity operator on H ® K, where T; @ U; =

Pv,i®w,- SV® w for i € I and j € J. Furthermore,

AC
B2 D2

a?b? | fogll* <Y viwi(ToU;)(fog)l’ a’b? | fogl

(2]

B
< A2(02
forall f ® g € H @ K, where a and b are constants with ab = 1.

Proof. Since Sy and Sy are fusion frame operators for V' and W, respectively, for all
f € H, g € K,wehave

f=2 viPv (Sy'f) and g = ) wiPw, (Sy'g).

iel jeJ
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Now, forall f ® ¢ € H ® K, we have

feg- (zvfpw (Svlf)> ® (Z w? P, (swlw)

iel jedJ

va wj (Pv, Sy ' (f) @ Pw, Sy (g))
:Zuiwj (Pv, ® Pw,) (Sy ' @ Sp') (f ® g)

= Zvizwjzpvmasz;éw (f®g).
2¥)
This shows that {v?w? (T; ® U; )}l i is a resolution of the identity operator on H ®

K, where T; @ U; = Pwmsv@w = Py, Sy ' @ Pw, Sy'. Now, by (VI) of the
Theorem (2.4), there exist constants a and b with ab = 1 such that

Ti(f) =aPy,S, ' (f)VfeH and U;j(g) =bPw,Sy'(g9) Vg € K.
Then, foreach f ® ¢ € H ® K, we have
vaw?H(Ti@Uj)(f@@g ) I Zv wi T (f) ® Uj(g )|
i, ]

= 02w | T (NI 1T ()1l
i J

= (Z U?lTi(f)Hf) (Z w} ||Uj(9)22)
iel jeJg
69 = (Zv? HanS‘?l(f)Hf) (Zw? ||bPWjSm_,1(g)H22)

iel jeJ

[ since V, W are fusion frames |

<BDa®b? |57 ()| |Swt (9)]

BD BD
< e VL3913 = g @202 IS @ g%

[since B™'Iy < Sy;' < A™'Iyand D™ 'Ix < St < C7 Mgk

IN

On the other hand, using (3.9), we get
St (T U) (fog)l®=Aaca®b? | sy (O 1Sy (o)l

¥
AC 2 AC 272 2
> 2oz VTS = 5aps e* b I f @4l
This completes the proof. O

4. ALTERNATIVE DUAL FUSION FRAME IN TENSOR PRODUCT OF HILBERT SPACES
In this section, an alternative dual of a fusion frame in H ® K is discussed.
Theorem 4.10. Let V and W be fusion frames for H and K with frame bounds A, B and

C, D having their corresponding fusion frame operators Sy and Sy, respectively. Then the
family A = {8y gw (Vi@ Wy), viw; }, ; is a fusion frame for H @ K.
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Proof. By Theorem 2.3, forall f € H and g € K, we have

Al fI7 < 2 2 < 2 —12 2
(4.10) e < > [ Pav (D), = BUSV I S0P f S
||SV || HSV H i€l !
C 2 2 -
@11) 1l < S w2 [Py, ()| <D w12 5t 1913

12
HSWH2 ||SW1H jed
Multiplying the inequalities (4.10) and (4.11) and using (2.2), we get

AC||f®9H2
11 w
1Sy 112 1 Sw 12 ]Sy M1 [ St 1| EZ

2
)& Poiw, (9) |

gBDw%wnwwﬂwawﬂwwWHw®mﬂ
Therefore, foreach f ® g € H ® K, we get

AC| f @ g]|2
UUJ
1Sv ® Swl? | Sy ® Syt §:

2
ClViesyt j(f®g)H

gBwa®swnH&ﬂ®Swwﬂw®gw

AC|f ) 2
2 = Zv?w? "PSJQW(Vic@Wj)(f@g)“

ISvewll® || Svaw

<BDH&®WHH&®WWHf®mH

A
This shows that A is a fusion frame for H ® K with bounds ¢

2 | Svew|” HSV®W||
and BDIISV®W|| HSV@)WH :
O

Definition 4.10. Let V ® W be a fusion frame for H ® K and Sy ¢ w be the correspond-
ing fusion frame operator. Then a fusion Bessel sequence V' @ W' in H ® K is said to
be an alternative dualof V @ W ifforall f ® g € H ® K,

fo®g=>) viwjoiw} Pyigw Sydw Priew, (f @ g).
]
Remark 4.6. According to note (2.2), a reconstruction formula on K is also described by
_ 2 —1
9= Z wiPg 1y, Sy Pw,;(g9) Vg€ K
j€d
Thus, foreach f ® g € H @ K, we get

f ®g = (Z U?PSVIViSVTlPVi(f)> (24 Z w.?PSVT/leSVT/lewj(g)

i€l jeJ
=Y vl (Poovy, @ Pgoy, ) (St @ Sit) (Pu@ Pu,) (@ g)
= Z”?wyzpsglvi@)s;vle Syew Priaw, (f ® g)

Vew

=D viwiPsoi view,) Svaw Prew, (f @ g).
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Thus, we see that the canonical dual frame { Sy é w (Vi® W;), viw, }Z i is an alterna-
tive dual fusion frame for H @ K.

Theorem 4.11. Let V and W be fusion frames for H and K with their alternative dual V' =

{(Vi o) Ysepand W= {(W/, w}) }jeJ,respectively, Then V' @ W' is an alternative

dual of the fusion frame V@ W for H ® K.

Proof. By Theorem (3.5), V' ® W is a fusion frame for H ® K and V' ® W' is a fusion
Bessel sequence in H ® K. Since V'’ and W' are alternative dual sequences of V' and
W,foreach f € H and g € K, we get

f= Z vivi Py, Syt Py, (f) and g = Z wjwj Py Sw' Pw, (g).
iel jeJ

Then, forall f ® ¢ € H ® K, using the Theorem (2.4), we get

f®g= (Z vingVi/SleVi(f)>® ijw;PW/SV?/IPWJ‘(g)

iel jeJ

= > viwsviw) (Pyy @ Puy) (S0 @ Sp') (Pv @ Pw,) (f @ 9)
2¥]

-1
=Y viw;viw; Pvigws Sygw Priew, (f ® g).
i

This completes the proof. O

Theorem 4.12. Let V and W be fusion frames for H and K with bounds (B1, D1) and
(B2, Dy) having their alternative duals V' = {(V;", v})},c, and W' = { (W], w};) }J,EJ,

? J

respectively. Then V' ® W' is a fusion frame for H ® K.

Proof. Since V' and W' are fusion Bessel sequences in H and K, respectively, by Theo-
rem (3.5), V' ® W' is a fusion Bessel sequence in H ® K. Also, since V' and W' are
alternative dual sequences of V' and W, respectively, by Theorem (4.11), V/ ® W' is an
alternative dual of the fusion frame V @ W for H @ K. Now, foreach f ® g € H ® K,
we have

lfe@gl>=(feg. f®g)
= <wajv§w} Pyvrow; Svgw Pvi®wj(f®9),f®9>
i, ]
= Zviwjvgw; <S\7éWPVi®Wj(f®9)7Pm'®wj’(f®9)>
%7
=Y viwjviw) (S5 Py (f) @ S5t P, (9), Py (F) @ Pwy(g))
%7

= (Z v;v] <SV1Pvi<f>,Pv,<f>>1> Y wiw) <SV;1PWJ.<9),PW,<9>>2

iel jeJ

IN

(St POl 1P 1L ) (S wstllsed Pl Pt

- - 2
el JjeJ
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1/2 1/2
< (X e?lset Punly DD PuHI )
i€l iel
1/2 1/2
2 -1 2 72 2 : :
w? || Syt Pw, (9) ] > (wp)? | Pws ()] [ by C-S inequality |
jedJ JjedJ
1/2
< VDD | Sy IS I llglle {30 (o2 [Py (HIF ) x
i€l
1/2
Z (wJ’)2 HPW], (g9) H2 [ since V, W are fusion frames |
jed 2
1/2
2
= VDiD: |S7dwl I1f @ gl | S (02 (w))? | Prrow; (f @ g)
i\
1 2 /2 72 ?
= ——— 1@ gl <> (w2 (w)? | Praw, (Fo 9)| -
PN > (] |
This completes the proof. O

5. CONCLUSION

In this paper, in the setting of tensor product of Hilbert spaces, we give the ideas of
fusion frame and alternative dual fusion frame and then establish some characterizations
of them. Yet it remains to establish another few important concepts of fusion frame theory
like, perturbation, stability etc. in the setting of tensor product of Hilbert spaces.
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