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Closures of high submodules of QTAG-modules

MOHD NOMAN ALI1, VINIT KUMAR SHARMA2 and AYAZUL HASAN3

ABSTRACT. A right module M over an associative ring R with unity is a QTAG-module if every finitely
generated submodule of any homomorphic image of M is a direct sum of uniserial modules. We show the clo-
sures properties for certain high submodules by the QTAG-modules and vice versa. Important generalizations
and certain related assertions of classical results in this direction are also established.

1. INTRODUCTION AND TERMINOLOGY

In 1976, Singh [17] introduced the concept of TAG-modules which was a generalization
of torsion abelian groups. This encourages many researchers to investigate abelian group
theory in TAG-modules. The notion of TAG-modules is one of the most important tools
in module theory. Its importance lies behind the fact that this module can be applied in
order to generalized torsion abelian group accurately. This kind of TAG-modules has
been widely investigated. For details on the abelian groups behaving like modules, we
refer to [1, 19].

Consider the following two conditions on a module M over an arbitrary (associative,
unitary) ring R.
“(i) Every finitely generated submodule of any homomorphic image of M is a direct sum
of uniserial modules.
(ii) Given any two uniserial submodules U1 and U2 of a homomorphic image of M , for
any submodule N of U1, any non-zero homomorphism ϕ : N → U2 can be extended to a
homomorphism ψ : U1 → U2, provided the composition length d(U1/N) ≤ d(U2/ϕ(N)).”

When MR is a module and satisfies clauses (i) and (ii), it is called a TAG-module, and
when MR has condition (i) only, it is called a QTAG-module (see [18]). Significant work
on this concept was produced by many authors, concentrating in the main in establishing
when torsion abelian groups are actually QTAG-modules. They have also investigated
some of their interesting properties and characterizations of these modules. It is worth-
while noticing that many of the developments in this direction are analogous to the earlier
development of torsion abelian groups (see, for instance, [8, 14] ). The present work is a
natural extension of the torsion abelian groups over to the area of QTAG-modules and
certainly contributes to the overall knowledge of the structure of QTAG-modules.

Some of the fundamental concepts used in this paper have already appeared in one of
the co-authors’ previous works from [6] which is necessary for our successful presenta-
tion.

Throughout our discussion all rings below are assumed to be associative and with non-
zero identity element; all modules are assumed to be unital QTAG-modules. A uniserial
module M is a module over a ring R, whose submodules are totally ordered by inclu-
sion. This means simply that for any two submodules S1 and S2 of M , either S1 ⊆ S2
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or S2 ⊆ S1. An element u ∈ M is uniform, if uR is a non-zero uniform (hence uniserial)
module and for any moduleM with a unique decomposition series, the symbol d(M) will
denote its decomposition length. If u is an uniform element of M (i.e., u ∈ M ), then e(u)
is called the exponent of u, and e(u) = d(uR). As usual, for such a module M , we set the
height of u in M as HM (u) = sup{d(vR/uR) : v ∈ M, u ∈ vR and v uniform}. For every
non-negative integer t, Ht(M) = {u ∈M |HM (u) ≥ t} denotes the t-th copies of M which
can be viewed as a submodule of M consisting of all elements of height at least t. The
topology of M which admits as a base of neighbourhood of zero is known as h-topology.
This topology has the submodules Ht(M) with t = 0, 1, . . . ,∞. In this way, a submodule
S of M is called the closure in M if S = ∩∞

t=0(S + Ht(M)) and S is closed with respect
to this topology provided that S = S. For a module M , the letter M1 will always denote
in the sequel the submodule of M , containing elements of infinite height. The sum of all
simple submodules of M is called the socle of M , denoted by Soc(M) and a submodule
S of Soc(M) is called a subsocle of M . For all t ≥ 0, fM (t) is the t-th Ulm invariant of M
and it is equal to Soc(Ht(M))/Soc(Ht+1(M)).

We add some additional background material as well from [13]. The module M is
termed h-divisible if M = M1 = ∩∞

t=0 Ht(M), or equivalently, if H1(M) = M . With this
in hand, we say that the module M is h-reduced if it does not contain any h-divisible sub-
module. Moreover, the moduleM is defined to be bounded if ∃ t ≥ 0 such thatHM (u) ≤ t
for some u ∈ M . A submodule S of M is named h-pure in M if for every non-negative
integer t the equality S ∩Ht(M) = Ht(S) holds. A submodule S of M is termed a basic
submodule ofM , if S is an h-pure submodule ofM , S is a direct sum of uniserial modules
and M/S is h-divisible.

It is well to note that various results for TAG-modules are also valid forQTAG-modules
[12]. Our present work is motivated by the many significant results from the reference
[10]. For a better understanding of the topic mentioned here, one must go through pa-
pers [5, 15, 16]. In what follows, all notations and notions are standard and will be in
agreement with those used in [2, 3]; for the specific ones, we refer the readers to [20].

2. CHIEF RESULTS

The concept of a high submodule was introduced into the structure theory of QTAG-
modules by Khan in [11]. Since then many papers have been written investigating the
various properties of high submodules (see, for instance, [7]). Here, we continue the
study of these high submodules of QTAG-module M and consequently investigate the
relation between the closure of a summand of M and the closure of a summand of high
submodules of M . For facilitating the exposition and for the convenience of the readers,
we recall the definition of high submodules.

Definition 2.1. A submodule S is called a high submodule of the QTAG-module M if it
is maximal with respect to having zero intersection with Hω(M).

The following elementary, but useful lemma, possess a central position.

Lemma 2.1. Let M be a QTAG-module, and S be a high submodule of M . Then S/S is a
summand of M/S.

Proof. By hypothesis, S is a high submodule of M and hence M/S is h-divisible. Since an
h-divisible submodule is an absolute direct summand, we infer that

M/S = (M/S)⊕ (S1/S)
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for some submodules S1 of M containing S. But

S/S = (S2/S)⊕ (S3/S),

where S2/S is h-divisible and S3/S is h-reduced. Now we may write

S1/S = (S4/S)⊕ (S2/S)⊕ (S5/S),

where (S4/S) ⊕ (S2/S) is h-divisible, and S5/S is h-reduced with the property that S5 ⊇
S3. Observing that S2 + S3 = S ⊆ S2 + S5. Suppose x ∈ S2, y ∈ S5; if (x+ y) ∈M1. Then

(x+ y) + S ∈ ((S2 + S5)/S)
1 = (S2/S)

1 ⊕ (S5/S)
1 = S2/S.

It follows that (x + y) ∈ S2 ∩M1 ⊆ S ∩M1 = 0. From the maximality of S, we have
S = S2 + S5. This, in tern, implies that S5 = S3. Henceforth,

S/S = (S2/S)⊕ (S5/S),

and consequently,
M/S = (M/S)⊕ (S4/S)⊕ (S/S).

We are finished. □

And so, we will verify the validity of the following theorem.

Theorem 2.1. Let S be a high submodule of the QTAG-module M such that S = S ⊕ S1 for
some submodules S1 of M . Then M = S1 ⊕ S2 such that S2/M is h-divisible in M/M.

Proof. In accordance with Lemma 2.1, one may see that

M/S = (M/S)⊕ (S3/S)⊕ (S/S)

with (M/S)⊕ (S3/S) is h-divisible. Let S2 =M + S3. Then

M/S = (S2/S)⊕ (S ⊕ S1)/S,

and hence M = S1 ⊕ S2. Furthermore, with Lemma 2.1 at hand, we subsequently deduce
that

M/M = (S2/M)⊕ (S1 ⊕M)/M.

Since S2/S = (M/S) ⊕ (S3/S) is h-divisible, it follows that S2/M is h-divisible. In fact,
(S1 ⊕M)/M ∼= S1 being h-reduced forces that S2/M is h-divisible in M/M. Moreover,
it is readily verified that S2 is the only summand of M complementary to S1. Thus if
M = S4 ⊕ S1 = S2 ⊕ S1, we deduce that M ⊆ S4, and

M/M = (S4/M)⊕ (S1 ⊕M)/M = (S2/M)⊕ (S1 ⊕M)/M.

Observe that S4/M is h-divisible in M/M , since as mentioned before S2/M is so. Conse-
quently, S2 = S4, as required and this gives the result. □

Next, we concentrate on the following theorem.

Theorem 2.2. Let S be a high submodule of an h-reduced QTAG-module M . Then M is a
summand of M if and only if S is a summand of S such that M/M is h-reduced.

Proof. To treat the necessity, observe that M = M ⊕ S1, for some submodules S1 of M .
Moreover, let S be a high submodule of M . Thus S ⊕ S1 has no element of infinite height
in M . It is fairly to see that S ⊕ S1 is high in M , and hence S is a summand of S. Since
M/M ∼= S1, it easily follows that M/M is h-reduced.

Concerning the sufficiency, suppose that M/M is h-reduced, and that S is a summand
of S. Setting S = S ⊕ S1, for some submodules S1 of M . In virtue of Theorem 2.1, write
M = S1 ⊕ S2, where S2/M is h-divisible in M/M . Indeed, M/M is h-reduced, and hence
S2 =M . Therefore M =M ⊕ S1, and we are done. □
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We come now to a significant characterization of high submodules of h-reducedQTAG-
modules.

Theorem 2.3. Let M be an h-reduced QTAG-module such that M =M ⊕N , for some submod-
ules N of M . Then there is a 1-1 correspondence between the set of all high submodules of M and
the set F = {∪α∈IHom(N,M/Sα) : (Sα)α∈I is the set of all high submodules of M}.

Proof. Suppose Sα is a high submodule ofM , and let β ∈ Hom(N,M/Sα). Then β induces
an isomorphism

γ : N/ker(β) −→ L/Sα

such that Sα ⊆ L ⊆M . Let

S = {a+ b : γ(a+ ker(β)) = a+ Sα}.
Indeed, we first claim that S is a high submodule of M . To prove this, we foremost see
that M is h-reduced, and hence M1 = (M)1. It is apparently seen that S ∩M = Sα and
thus immediately S ∩M1 = {0}.

Let u be an uniform element of M such that u ̸∈ S. Then u = b + c, b ∈ N , c ∈ M and
c ̸∈ S. Therefore, there exists a ∈ L such that (a+ b) ∈ S. Hence,

(b+ c)− (a+ b) = (c− a) ̸∈ S.

If now Sα is a high submodule of M . This insures at once that

⟨uR, SR⟩ ∩M1 ⊇ ⟨(c− a)R, SαR⟩ ≠ {0},
and hence S is a high submodule of M . In fact, it is elementary to verify that distinct β’s
in ∪α∈IHom(N,M/Sα) give rise to distinct high submodules.

Next, since S is a high submodule of M such that M =M ⊕N . It easily follows that S
is a high submodule of M . We further observe that b ∈ N , b ̸∈ S. Then

tb+ x = y ∈M1 = (M)1

for some integer t and x ∈ S. Since y ∈ M1, we write y = tu, where u ∈ M . From the
h-purity of S, we have x = tz for some z ∈ S. Thus

b+ z − u = c ∈M

and so
b+ (u− c) = −z ∈ S.

Hence theQTAG-module ofN components of the element of S inN . Let L be theQTAG-
module of M components of the element of S. Then S ⊆ L ⊆ M . It is plainly seen that S
is a subdirect sum of L and N , and

N/(S ∩N) ∼= L/(S ∩ L) = L/S.

The proof of the theorem is completed. □

The question whether all closures of high submodules are summands, has a signifi-
cance in the theory of QTAG-modules. We conjecture that the problem has a negative an-
swer in general, but nevertheless we shall inspect in the sequel its validity for h-reduced
QTAG-module. However, we now have the following example.

Example 2.1. LetM be aQTAG-module such thatM is h-reduced with non-zero elements
of infinite height. Consider any high submodule S1 of M such that S1 is high in M . If S2

is a bounded submodule of M , then M = M ⊕ S2. Since M/S1 is h-divisible, then there
is a submodule S3 of M such that d(S3/S1) = ∞. Likewise, let S4 be any submodule
of S2 such that d(S2/S4) = ∞. Let γ : S3/S1 −→ S2/S4 be an isomorphism such that
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S1 = {a+ b : γ(a+ S1) = b+ S4}. By virtue of Theorem 2.3, S1 is a high submodule of M ,
and S1 is the closure of S1.

Suppose S1 is a summand of S1 such that S1 = S1 ⊕ S5. It is plainly seen that S5

is a subdirect sum of S6 and S2 where S1 ⊆ S6 ⊆ S3. However, since S6/(S6 ∩ S5) ∼=
S2/(S2 ∩ S5), we obtain that S6 ∩ S5 = {0}. Hence S6 is a homomorphic image of S2. But
S6 is h-reduced and the homomorphic image of S2 is zero. In other words, we must have
S6 = {0}. Observe that S6 ⊇ S1 = {0}, and moreover it follows that no high submodule
of S3 is zero. This contradiction proves our assertion after all.

We are now ready to discuss the question of whether or not any two high submod-
ules of an h-reduced QTAG-module are isomorphic. Let N be a submodule of a QTAG-
module M , and let Ñ be the image under the natural homomorphism from M onto
M/M1. It is easy to verify that M is an h-reduced QTAG-module without elements of
infinite height. Thus if N is a high submodule of M , N ∼= Ñ . This provides us a nat-
ural way to study the properties of high submodules without actually looking at these
submodules themselves.

So, we turn next to the following observation, which is parallel to an assertion due to
Irwin [9].

Theorem 2.4. Suppose {S1, S2} is a pair of high submodules of a QTAG-module M. Then, for
some t ∈ Z+

Soc(Ht(S̃1))/Soc(Ht+1(S̃1)) = Soc(Ht(S̃2))/Soc(Ht+1(S̃2)).

In particular, S1 and S2 have the same Ulm invariants.

Proof. We first notice that Soc(S̃1) = Soc(S̃2). Then, for all uniform elements x ∈ S1,
we observe that e(x) = e(x + M1). We next assume that x ∈ Soc(S1)\S1 ∩ S2, there
exists y ∈ S2 such that x − y = z ̸= 0 where z ∈ M1. Furthermore, since e(y) = 1, it
follows easily that x = y + z. This gives that Soc(S̃1) ⊂ Soc(S̃2), and hence by symmetry
Soc(S̃1) = Soc(S̃2).

In the remaining case when Soc(Ht(S̃1)) = Soc(Ht(S̃2)), we assume that an uniform
element a ∈ M with (Ht(S1) + b) ∩M1 = 0 where d(aR/bR) = t for some b ∈ M and
b /∈ Ht(S1). From the h-purity of S1, we get that b /∈ Ht(S1) where d(aR/bR) = t. This
in tern, implies that b /∈ S1 where d(aR/bR) = t. Therefore, there exists c ∈ S1 such that
c + kb = d for some k ⩾ 0, d ∈ M1 and d(aR/bR) = t. This follows that c ∈ Ht(S1),
contrary to assumption. Hence in virtue of hypothesis, we have

Soc(Ht(S̃1))/Soc(Ht+1(S̃1)) = Soc(Ht(S̃2))/Soc(Ht+1(S̃2)),

since the numerators are equal and the denominators are equal, and hence the Ulm in-
variants of S̃1 and S̃2 are equal. Finally the fact that S1

∼= S̃1 gives us that S̃1 and S̃2 have
the same t-th Ulm invariants. □

This brings us to another technical observation.

Theorem 2.5. Suppose {S1, S2} is a pair of high submodules of a QTAG-module M . Then
(i)M/S1

∼=M/S2;
(ii) S1/S1

∼= S2/S2;
(iii)M/S1

∼=M/S2.

Proof. (i) This follows straightforward, since S1 and S2 are high submodules of M .
(ii) Let S3 is a submodule of M , and let S̃3 = (S3 +M)/M . Then S̃1 is maximal disjoint
from M̃1 in M̃ , that is, S̃1 ∩ M̃1 = 0.
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To show this, suppose that x +M = y +M with x ∈ S1, y ∈ M1. Then x − y ∈ M . It
follows that for some integer t, tx = ty = 0, so that x+M = 0.

Next, suppose z+M /∈ S̃1, and that ⟨z+M, S̃1∩M̃1⟩ = 0. Since S1 is a high submodule
of M , there exists x ∈ S1 and an integer t such that 0 ̸= x = tz = y ∈M1. For each a ∈ S1

choose b ∈ M such that ta+ tz = tb. Basically, one may choose y ∈ M , and hence b ∈ M .
Thus

a+ z − b = y ∈M,

and so
z +M = −a+ (b+ y) +M = −a+M ∈ S̃1.

But z + M ̸∈ S̃1. We conclude that S̃1 ∩ M̃1 = 0. Since M̃1 ⊆ (M̃)
1

is h-divisible, M̃
contains a minimal h-divisible submodule S̃4 of S4 which contains M̃1. Consequently,
S̃1 ∩ S̃4 = {0}. Note that S̃4 is an absolute summand, so that M̃ = S̃1 ⊕ S̃4, for any high
submodule S1 of M . Thus S̃1

∼= S̃2. And finally, since

S1/S1 = S1/(S1 ∩M) ∼= (S1 +M)/M = S̃1
∼= S̃2 = S2/S2,

the claim (ii) follows.
(iii) First we note that
M/S1 = (M/S1) ⊕ (S5/S1) and M/S2

∼= M ⊕ (S6/S1), for some submodules S5 and
S6 of M . Since S1 and S2 are high submodules of M , we have M/S1

∼= M/S2. But
S5/S1

∼=M/M ∼= S6/S2. Hence M/S1
∼=M/S2, as needed. □

The concept of Σ-uniserial modules, play a prominant role to the study of QTAG-
modules. We shall say that a QTAG-module M is a Σ-uniserial [4] if it is isomorphic to
a direct sum of uniserial modules. Notice that Σ-uniserial modules are separable (i.e.,
M1 = 0). It is apparent to see that these modules are necessarily ω-bounded, that is they
have zero first Ulm submodule (i.e., M1 = ∩∞

t=1Ht(M)).
Likewise, a QTAG-module M is called a Σ-module (see [11]) if its high submodules

are the direct sum of uniserial modules. It is well known that if M is a Σ-module, then all
its high submodules are Σ-uniserial, and that the separable Σ-modules are precisely the
Σ-uniserial modules.

We now proceed by proving the following statement.

Corollary 2.1. Suppose {S1, S2} is a pair of high submodules of a QTAG-module M such that
S1 is Σ-uniserial in M . Then M is a Σ-module, and S1

∼= S2.

Proof. Since S1 and S2 are high submodules of M , it is readily checked that S2 is a Σ-
uniserial module and S1

∼= S2. But S1/S1
∼= S2/S2, so that S2 is a Σ-uniserial module and

S1
∼= S2.
On the other hand, let us assume that A is a QTAG-module for some submodules

B ⊆ M with M = A ⊕ B. Let S1 be high in M , and let AS1 be the QTAG-module of A
components of the elements of S1. Then S1 is a subdirect sum of AS1

and B, and

AS1
/(S1 ∩A) = AS1

/S1
∼= B/(S1 ∩B).

Thus B/(S1 ∩ B) is a QTAG-module, and if ⟨xR⟩ is a uniserial summand such that xR ̸∈
S1 ∩B, then

B/(S1 ∩B) = ⟨xR+ S1 ∩B⟩ ∼= AS1/S1

is a finitely generated uniserial module. Since S1 is h-pure in AS1 , this means that

AS1 = S1 ⊕ C
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for some submodule C of M . Thus

S1 ⊆ S1 ⊕ C ⊕B, S1 = S1 ⊕ (S1 ∩ (C ⊕B)),

and so S1 is a summand of S1. Since S1/S1
∼= B, we get S1

∼= S1 ⊕ B. It is clear that any
submodule high in A is a basic submodule of M , whence any two high submodule of A
are isomorphic. It follows that every high submodule of M is isomorphic to S1 ⊕ B. The
proof is over. □

3. OPEN PROBLEMS

We close the work by formulating the following problems.

Problem 3.1. Determine under what additional circumstances in Theorem 2.2 the hypothesis that
M/M be h-reduced is not required.

Problem 3.2. Describe those QTAG-modules such that all high submodules are endomorphic
images?

Problem 3.3. Suppose {S1, S2} is a pair of high submodules of a QTAG-module M such that S1

is Σ-uniserial in M . What are the conditions under which f(S1⊕S2)(t) = f(S1)(t) + f(S2)(t)?
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