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A Note on Moritoh Transforms

AWNIYA KUMAR1, SUNIL KUMAR SINGH2∗ and SHEO KUMAR SINGH1

ABSTRACT. Some fundamental properties of the Moritoh wavelet are discussed in this paper. The Mori-
toh transform is approximated for ultra-distributions in generalised Sobolev space. The adjoint formula of the
Fourier transform is extended to the Moritoh transform. The convolution for quaternion-valued functions is de-
fined for a modified representation of quaternions. Furthermore, the quaternionic Moritoh transform is defined
with the help of convolution. The inner product relation and the uncertainty principle are also established for
the quaternionic Moritoh wavelet transform.

1. INTRODUCTION

Murenzi transforms and Moritoh transforms are n-dimensional wavelet transforms.
The Moritoh wavelet transform was defined in [11], which differs from Murenzi’s prior
n-dimensional wavelet transform [12]. Moritoh transforms incorporate special type of
rotational characteristics and Littlewood-Paley decompositions. The wavelet transform
in Besov and Triebel-Lizarkin spaces has been discussed by S. Moritoh. Moritoh had
discussed the Hormander’s wave front sets using this transform.

Various setups have been used to examine quaternionic Fourier transforms and wavelet
transforms throughout the last two decades. Jianxun He and Yu [6] conducted research
on the wavelet transform in L2(R;H). They demonstrated that in general, quaternion-
valued functions fails to satisfy the convolution theorem. Later, Akila and Roopkumar
[1], developed convolution of quaternion-valued functions in a novel method and proved
the convolution theorem. F. A. Shah et al. [15] employed this technique lately to ex-
amine the quaternionic Bendlet transform in 2-D. Quaternionic wavelet transforms have
been investigated in several ways in 2-D [2, 3, 9]. Kundu and Prasad [7] investigated
uncertainty principles and Young-Hausdroff inequalities for quaternion linear canonical
transform. In [8], they also investigated the quaternion function space using quaternion
pseudo-differential operators. Prasad et. al [14] developed the Lieb uncertainty principle,
Donoho-Stark inequality, and local uncertainty principle for the quaternion windowed
linear canonical transform. They also demonstrated its application in the linear time-
varying TV system. The n-dimensional Moritoh wavelet transforms has been investigated
in the quaternionic space in this article.

The paper is distributed in three sections. In the first section, we recall the defini-
tions and some important results of the Moritoh wavelet. In the second section, the basic
properties of Moritoh transform is derived. The approximation of the Moritoh transform
for ultra distributions on the generalised Sobolev space Bωp,k and estimation of Moritoh
wavelets have been investigated. The adjoint formula for Fourier transform [18] has been
obtained for Mortioh transforms. Also, it has been shown that the Moritoh transform
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of the function in Lp is tempered distribution for |ξ| < 1. The fundamentals of quater-
nions have been examined in the third section. A new representation of quaternions have
been proposed. The conjugate, product, inner-product of the two quaternions and the
quaternion-valued functions are expressed in the proposed representation. The convolu-
tion of quaternion-valued functions in the proposed representation has been given, and
with its help, the quaternionic Moritoh transform (QMT) is defined. Some basic properties
of the quaternionic Moritoh transform are given. The relation between the quaternionic
Fourier transform of QMT and the real-valued classical Moritoh transform has been es-
tablished. In every representation, we have tried to represent the expressions and results
in such a way that after expanding the expressions, the results coincide with those in
the format of a real-valued coefficient having three pure quaternions as basis elements.
Furthermore, some results related to the quaternionic Moritoh transform and inner prod-
uct relations have been established. It has been shown that the quaternionic Moritoh
transform satisfies the uncertainty principle. At the end, the conclusion of the article is
discussed.

Definition 1.1 (Moritoh wavelet). Let ξ ∈ Rn and rξ be any rotation on Rn sending unit
ξ/|ξ| to (0, · · · , 0, 1), then Moritoh wavelet can be defined by the family ψx,ξ as:-

ψx,ξ(t) := |ξ|n/2ψ(|ξ|rξ(t− x)), where ξ, x ∈ Rn.

Definition 1.2 (Moritoh wavelet transform [11]). Suppose that a function ψ(x) (called a
wavelet) such that: ψ(x) ∈ S (Rn), ψ̂(ξ) ∈ C∞

0 (Rn) and ψ̂(ξ) ≧ 0. Let Ω = supp ψ̂(ξ)
be in a neighbourhood of (0, · · · , 0, 1). When n = 1,Ω ⊂ (0,∞), while when n ≧ 2,Ω
is connected, does not contain the origin 0 and ψ(x) = ψ(rx) for r ∈ SO(n) satisfying
r(0, · · · , 0, 1) = (0, · · · , 0, 1). Let rξ be any rotation which sends ξ/|ξ| to (0, · · · , 0, 1). Then
Moritoh wavelet transform is defined as follows: for f ∈ S ′(Rn), (x, ξ) ∈ Rn × Rn,

(1.1) Wψf(x, ξ) =


∫
R
f(t)|ξ|

1
2 ψ(ξ(t− x))dt, if n = 1∫

Rn

f(t)|ξ|
n
2 ψ(|ξ|rξ(t− x))dnt, if n ≧ 2.

Here S (Rn) stands for the Schwartz class C∞
0 (Rn) consists of the functions which are

smooth and compactly supported. The set SO(n) represents the set of n × n orthogonal
matrices.

If we take ψξ(t) = |ξ|
n
2 ψ(|ξ|rξ(t)), then the Moritoh wavelet can be written in the form

of convolution as Wψf(x, ξ) = (f ∗
⊻
ψξ)(x), where

∨
ψ(x) = ψ(−x). Applying convolution

theorem for Fourier transform, we get

F [Wψf(x, ξ)](τ) = F [(f ∗
⊻
ψξ)(x)](τ) = f̂ ψ̂ξ.

In this paper, the terms Moritoh wavelet transform and Moritoh transform will be used
interchangeably for the sake of simplicity.

Proposition 1.1 (Parseval’s formula and the inversion formula [11]). For f, g ∈ L2(Rn),
we have ∫

Rn

∫
Rn

Wψf(x, ξ)Wψg(x, ξ)d
nxdnξ = Cψ

∫
Rn

f(t)g(t)dnt,

and

f(t) = C−1
ψ

∫
Rn

∫
Rn

Wψf (x, ξ)|ξ|n/2ψ(|ξ|rξ(t− x))dnxdnξ, n ≧ 2,
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where
0 < Cψ =

∫
Rn

|ψ̂(ξ)|2 d
nξ

|ξ|n
<∞.

When n = 1, |ξ|rξ(t− x) = ξ(t− x). For f ∈ S ′(Rn), this inversion formula holds in the sense
of distribution.

Remark 1.1. The following result holds:-∫
Rn

f(rθx)e
−2πi⟨ω,x⟩dnx = f̂(rθ(ω)).

Proposition 1.2. The Fourier transform of ψx,ξ is given by

(1.2) F{ψx,ξ}(ω) = ψ̂x,ξ(ω) = |ξ|−n/2ψ̂(|ξ|−1
rξω) e

−2πi⟨ω, x⟩.

Proof.

F{ψx,ξ}(ω) =
∫
Rn

ψx,ξ(t) e
−2πi⟨ω,t⟩dnt =

∫
Rn

|ξ|n/2ψ(|ξ|rξ(t− x))e−2πi⟨ω,t⟩dnt.

Put |ξ|(t− x) = u, then t = |ξ|−1
u+ x and dnt = |ξ|−ndnu.

F{ψx,ξ}(ω) =
∫
Rn

|ξ|−n/2ψ(rξ(u))e−2πi⟨ω,|ξ|−1u+x⟩dnu

= |ξ|−n/2ψ̂(|ξ|−1
rξω) e

−2πi⟨ω, x⟩.

□

Remark 1.2. In view of Parseval’s formula and the equation (1.2), the Moritoh wavelet
transform can be rewritten as:-

Wψf(x, ξ) = ⟨f(t), ψx,ξ(t)⟩ = ⟨f̂(t), ψ̂x,ξ(t)⟩ =
∫
Rn

f̂(τ)|ξ|−n/2ψ̂(|ξ|−1
rξτ) e

2πi⟨τ, x⟩dnτ.

1.1. Moritoh wavelet in 1D. We take ψ(t) = t(1− t2)e−1.5t2 then Moritoh wavelet trans-
lated by 3 and dilated by 2 is given in Figure 1.

FIGURE 1. 1D-Moritoh
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2. BASIC PROPERTIES OF MORITOH WAVELET TRANSFORM

Theorem 2.1. Let α, β ∈ R and functions f, g be defined on Rn. Following results hold for the
Moritoh wavelet transform

(1) Wψ is linear, i.e.

Wψ(αf + βg)(x, ξ) = αWψf(x, ξ) + βWψg(x, ξ).

(2) Parity

WPψPf(x, ξ) =Wψf(−x, ξ),

where Pf(t) = f(−t) is parity operator.
(3) Anti-linear

Wαψ+βϕf(x, ξ) = αWψf(x, ξ) + βWϕf(x, ξ).

(4)

WDcψf(x, ξ) =
√
|c|Wψf(x, ξ/c),

where Dcψ(x) =
1√
|c|
ψ(xc ) is dilation operator and c > 0.

(5) Translation property

Wψ(Tcf)(x, ξ) =Wψf(x− c, ξ),

where Tcf(x) = f(x− c) is translation operator and c > 0.
(6) Dilation property

Wψ(Dcf)(x, ξ) = c
2n−3

2 Wψf

(
x

c
, c ξ

)
.

(7) If f is a homogeneous function of degree n and λ ∈ R+, then we have,

Wψf(λx, λξ) =
1

|λ|
3n
2

Wψf(λ
2x, ξ).

Proof. The proofs of (1)-(4) are straight forward.

(5)

Wψ(Tcf)(x, ξ) =

∫
Rn

f(t− c)|ξ|ψ(|ξ|rξ(t− x))dnt

=

∫
Rn

f(u)|ξ|
n
2 ψ(|ξ|rξ(u+ c− x))dnu

=

∫
Rn

f(u)|ξ|
n
2 ψ(|ξ|rξ(u− (x− c)))dnu

=Wψf(x− c, ξ).
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(6)

Wψ(Dcf)(x, ξ) =

∫
Rn

1√
|c|
f(t/c)|ξ|

n
2 ψ(|ξ|rξ(t− x))dnt

=

∫
Rn

1√
|c|
f(u)|ξ|

n
2 ψ(|ξ|rξ(cu− x))cndnu

= |c|
2n−1

2

∫
Rn

f(u)|ξ|
n
2 ψ(|ξ|rξ(c(u− x/c)))dnu

= |c|
2n−1

2

∫
Rn

f(u)|ξ|
n
2 ψ(|c ξ|rξ(u− x/c))dnu

= |c|
n−1
2

∫
Rn

f(u)|c ξ|
n
2 ψ(|c ξ|rξ(u− x/c))dnu

= |c|
n−1
2 Wψf(x/c, c ξ).

(7)

Wψf(λx, λξ) =

∫
Rn

f(t) |λξ|n/2 ψ(|λξ|rξ(t− λx))dnt

=

∫
Rn

f

(
u

|λ|

)
|λξ|n/2 ψ(|ξ|rξ(u− λ2x))

dnu

|λ|n

=

∫
Rn

1

|λ|n
· |λ|n/2 · 1

|λ|n
f(u) |ξ|n/2ψ(|ξ|rξ(u− λ2x)) dnu

(∵ f is homogeneous function of degree n )

=
1

|λ|
3n
2

Wψf(λ
2x, ξ).

□

2.1. Generalized Sobolev Space.

Definition 2.3 (The space Mc). The space Mc is the collection of real-valued continuous
functions ω on Rn having following properties

(i) 0 = ω(0) ≤ ω(ξ + η) ≤ ω(ξ) + ω(η),

(ii)
∫
Rn

ω(ξ)

(1 + |ξ|)n+1
dnξ <∞,

(iii) ω(ξ) ≥ a+ b log(1 + |ξ|), for all ξ ∈ Rn, a ∈ R, b ∈ R+, and
(iv) ω(ξ) = Ω(|ξ|), where Ω is concave function on [0,∞).

Definition 2.4 (Ultra distribution). For ω ∈ Mc, the collection of all functions ϕ ∈ L1(Rn)
with following properties

(i) ϕ, ϕ̂ ∈ C∞,
(ii) for multi-index α and non-negative number λ, the function ϕ satisfies,

pα,λ(ϕ) = sup
x∈Rn

eλω(x)|Dαϕ(x)| <∞,
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(iii) for multi-index α and non-negative number λ, the function ϕ satisfies,

πα,λ(ϕ) = sup
ξ∈Rn

eλω(ξ)
∣∣∣Dαϕ̂(ξ)

∣∣∣ <∞

is denoted by Sω . The space Sω forms topological space generated by semi norms pα,λ
and πα,λ. The dual space S ′

ω of the space of test functions Sω is called the space of ultra
distributions and its members are known as ultra distributions.

Definition 2.5 (Generalized Sobolev space [13]). Let k be positive function on Rn such
that k(ξ + η) ≤ eλω(−ξ)k(η) for all ξ, η ∈ Rn and λ > 0. For 1 ≤ p <∞ we have

∥f∥pp,k =

∫
Rn

∣∣∣k(ξ)f̂(ξ)∣∣∣pdnξ and ∥f∥∞,k = ess sup k(ξ)
∣∣f̂(ξ)∣∣.

The collection of all ultra distributions f ∈ S ′
ω for which ∥f∥p,k < ∞ is denoted by

Bωp,k(Rn) and known as generalized Sobolev space. For ω = log(1 + |ξ|), k(ξ) = (1 +

|ξ|2)s/2 and p = 2 it becomes the Sobolev space Hs.

In the following theorem, we will see the approximation of Moritoh transform of the
ultra-distribution on the generalized Sobolev space Bωp,k.

Theorem 2.2. For admissible Moritoh wavelets ψ, ϕ and ultra-distributions F,G ∈ Bωp,k(Rn),
we have

∥(WψF )(x, ξ)− (WϕG)(x, ξ)∥p,k ≤ |ξ|
−n
2

(
∥ψ − ϕ∥L1∥F∥p,k + ∥ϕ∥L1∥F −G∥p,k

)
.

Consequently, ∥(WψF )(x, ξ)∥ = o(|ξ|−n/2).
Proof.

∥(WψF )(x, ξ)− (WϕG)(x, ξ)∥p,k
= ∥(WψF )(x, ξ)− (WϕF )(x, ξ) + (WϕF )(x, ξ)− (WϕG)(x, ξ)∥p,k
≤ ∥(WψF )(x, ξ)− (WϕF )(x, ξ)∥p,k + ∥(WϕF )(x, ξ)− (WϕG)(x, ξ)∥p,k.

(2.3)

Using definition of ∥·∥p,k we have,

∥(WψF )(x, ξ)− (WϕF )(x, ξ)∥p,k

=

(∫
Rn

|((WψF )(x, ξ)− (WϕF )(x, ξ))ˆ(ω)|p|k(ω)|pdnω
) 1

p

=

(∫
Rn

∣∣∣F̂ (ω)|ξ|−n/2ψ̂(|ξ|−1
rξω)− F̂ (ω)|ξ|−n/2ϕ̂(|ξ|−1

rξω)
∣∣∣p|k(ω)|pdnω) 1

p

=

(∫
Rn

∣∣∣F̂ (ω)∣∣∣p|ξ|−np/2∣∣∣ψ̂(|ξ|−1
rξω)− ϕ̂(|ξ|−1

rξω)
∣∣∣p|k(ω)|pdnω) 1

p

.

(2.4)

By assumption in Moritoh wavelet we have ψ(x) = ψ(rx) which implies that
ψ̂(ω) = ψ̂(rω). As |ξ|−1

rξ is special rotation therefore, ψ̂(ω) = ψ̂(|ξ|−1
rξω). Since,∣∣∣ψ̂(|ξ|−1

rξω)− ϕ̂(|ξ|−1
rξω)

∣∣∣ ≤ ∥ψ − ϕ∥L1 . Using this in the equation (2.4), we get

(2.5) ∥(WψF )(x, ξ)− (WϕF )(x, ξ)∥p,k ≤ |ξ|−n/2∥ψ − ϕ∥L1∥F∥p,k.

Similarly, we get,

(2.6) ∥(WϕF )(x, ξ)− (WϕG)(x, ξ)∥p,k ≤ |ξ|−n/2∥ϕ∥L1∥F −G∥p,k.
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Using (2.5) and (2.6) in the equation (2.3) we get,

∥(WψF )(x, ξ)− (WϕG)(x, ξ)∥p,k ≤ |ξ|
−n
2

[
∥ψ − ϕ∥L1∥F∥p,k + ∥ϕ∥L1∥F −G∥p,k

]
.

□

Theorem 2.3. Let f ∈ L1(Rn). Let ψ be an admissible Moritoh wavelet with estimates

(2.7) |ψ(rξy)| ≤
A|ξ|n/2

1 +B|y|n
∀ y ∈ Rn.

For Moritoh transform, we have the following relation,

∥(WPψf)(x, ξ)∥p ≤
∫
Rn

A

1 +B|v|n
∥∥∥∆−|ξ|−1vf

∥∥∥
p
dnv.

Proof. By the admissibility condition of the Moritoh wavelet we have
∫
Rn

|ξ|n/2ψ(|ξ|rξy)dny =

0.

(WPψf)(x, ξ) =

∫
Rn

f(t)|ξ|n/2Pψ(|ξ|rξ(t− x))dnt

=

∫
Rn

f(t)|ξ|n/2ψ(|ξ|rξ(x− t))dnt

=

∫
Rn

f(y + x)|ξ|n/2ψ(|ξ|rξ(−y))dny

=

∫
Rn

(f(y + x)− f(x))|ξ|n/2ψ(|ξ|rξ(−y))dny

=

∫
Rn

∆yf(x)|ξ|n/2ψ(|ξ|rξ(−y))dny.

Using definition of Lp-norm and Minkowski’s inequality, we get,

∥(WPψf)(x, ξ)∥p =

∫
Rn

∣∣∣∣ ∫
Rn

(∆yf(x))|ξ|n/2ψ(|ξ|rξ(−y))dny
∣∣∣∣pdnx

 1
p

≤
∫
Rn

|ξ|n/2
∣∣∣ψ(|ξ|rξ(−y))∣∣∣∥∆yf∥pd

ny.

Let −y|ξ| = v, then dny = |ξ|−ndnv.

∥(WPψf)(x, ξ)∥p ≤
∫
Rn

∣∣∣ψ(rξv)∣∣∣∥∥∥∆−|ξ|−1vf
∥∥∥
p
|ξ|−n/2dnv.

Suppose the wavelet satisfies that following estimate

|ψ(rξy)| ≤
A|ξ|n/2

1 +B|y|n
,

where A and B are constants. Then

∥(WPψF )(x, ξ)∥p ≤
∫
Rn

A

1 +B|v|n
∥∥∥∆−|ξ|−1vf

∥∥∥
p
dnv.
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□

The estimate of Moritoh wavelet given in (2.7) is smooth and the plotted figure 2 shows
that the Moritoh wavelet satisfying estimate (2.7) have narrow width. For example, A =
1 = B and ξ, y ∈ [−10, 10], the graph of estimate function can be seen in the Fig. 2.

FIGURE 2. Estimation Function

The adjoint formula for the Fourier transform [18] have been generalised for the Mori-
toh transforms.

Theorem 2.4. Let ψ be admissible Moritoh wavelet and f, g ∈ S ′(Rn), then we have,∫∫
F [Wψf(x, ξ)]Wϕg(x, ξ)d

nxdnξ =

∫∫
Wϕf(x, ξ)F [Wψ g(x, ξ)]d

nxdnξ.

Proof. We know that F [Wψf(x, ξ)] = f̂(ω)|ξ|
−n
2 ψ̂(|ξ|−1

rξω) and hence Wψf(x, ξ)

=
∫
Rn

f̂(ω)|ξ|
−n
2 ψ̂(|ξ|−1

rξω)e
2πi⟨x,ω⟩dnω. Using these results, commutativity of complex

numbers and Fubini theorem, the result is straight forward. □

Now, in the following result we claim that for |ξ| < 1 and the function in Lp space, the
Moritoh transform Wψf is tempered distribution.

Theorem 2.5. Let 1 ≤ p ≤ ∞ and f ∈ Lp(Rn) then for |ξ| < 1, the Moritoh transform
Wψf(x, ξ) is tempered distribution.

Proof. As f ∈ Lp(Rn), therefore
∫
Rn

|f(x)|
(1+|x|)N d

nx < ∞ for some positive integer N . Hence,

f is tempered function.

|Wψf(x, ξ)| ≤
∫
Rn

|f(t)||ξ|
n
2 |ψ(|ξ|rξ(t− x))|dnt

≤

∫
Rn

|f(t)|
(1 + |t|)N

dnt

 |ξ|
n
2 sup
t∈Rn

{
(1 + |t|)N |ψ(|ξ|rξ(t− x))|

}
<∞.

Let {ψj} be a sequence of the Moritoh wavelets in S converging to 0 in S as j → ∞, then

(2.8) sup
t∈Rn

{(1 + |t|)N |ψj(|ξ|rξ(t− x))|} → 0 as j → ∞.
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Since, ∣∣(Wψjf)(x, ξ)
∣∣ ≤ ∫

Rn

|f(t)||ξ|
n
2 ψj(||ξ|rξ(t− x)|)dnt

≤
(∫
Rn

|f(t)|
(1 + |t|)N

dnt

)
|ξ|

n
2 sup
t∈Rn

{(1 + |t|)N |ψj(|ξ|rξ(t− x))|}.

Using, the equation (2.8), we conclude that
∣∣(Wψj

f)(x, ξ)
∣∣ → 0 as j → ∞. Hence, Wψf is

tempered distribution. □

3. QUATERNION-VALUED MORITOH WAVELETS

Definition 3.6 (Quaternions). The generalization of complex numbers namely, the quater-
nions was introduced by Sir William Roman Hamilton in 1843. The set of quaternions is
denoted by H and each element q ∈ H is written as

H = {q = a0 + i a1 + j a2 + k a3 | a0, a1, a2, a3 ∈ R},

where i2 = j2 = k2 = ijk = −1, ij = −ji = k, jk = −kj = i, ki = −ik = j.

Jianxun He et al. [6] and also L. Akila et al. [1] have represented the quaternions with
the help of complex-valued coefficients and only one pure quaternion, namely, j. Their
representation for quaternions can be mathematically described as: for q = a0 + i a1 +
j a2 + k a3 where aℓ are real numbers for ℓ = 0, 1, 2, 3, they used the representation as
q = z0 + jz1 where z0 and z1 are complex numbers. Here, we always have to specify that
the value of z1 is of conjugate type. In order to get back the same quaternion, we should
put the value of conjugate in place of z1. To get rid of the problem, we propose the new
representation, i.e., q = z0+ jz1. For proposed representation of quaternions, we have the
following lemma:

Lemma 3.1. The basic properties of quaternions can be represented in our proposed representation
as

(1) The conjugate q of q = a0 + i a1 + j a2 + k a3 is defined as q := a0 − i a1 − j a2 − k a3.
(2) A quaternion q = a0 + i a1 + j a2 + k a3 can be represented by q = z0 + jz1 where

z0, z1 ∈ C.

q = a0 + i a1 + j a2 + k a3 = a0 + i a1 + j a2 − ji a3

= (a0 + ia1) + j(a2 − ia3) = z0 + jz1.

Also, conjugate of quaternion can be written as q = z0 − jz1 for some z0, z1 ∈ C.

q = a0 − ia1 − ja2 − ka3 = a0 − ia1 − ja2 + jia3

= (a0 − ia1)− j(a2 − ia3) = z0 − jz1.

(3) The product of two quaternions say q1 = a0 + i a1 + j a2 + k a3 = z0 + jz1 and q2 =
b0 + i b1 + j b2 + k b3 = w0 + jw1 is represented as

(3.9) q1q2 = z0w0 − z1w1 + j[z1w0 + z0w1].

(4) The inner product of two quaternions q1 = a0 + i a1 + j a2 + k a3 = z0 + jz1 and
q2 = b0 + i b1 + j b2 + k b3 = w0 + jw1 is represented as

(3.10) ⟨q1, q2⟩ = q1q2 = z0w0 + z1w1 + j[z1w0 − z0w1].
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(5) The conjugate of product of quaternions and the product of the conjugate of two quater-
nions have the following relations:-

(3.11) q1q2 = q2q1 ̸= q1q2.

The product of the conjugate of two quaternions is given by

(3.12) q2q1 = w0z0 − w1z1 − j(w1z0 + w0z1).

(6) A quaternion-valued function f : Rn → H can be expressed as

F (x) = u0(x) + i u0(x) + j u0(x) + k u0(x) = f0(x) + jf1(x),

where u0(x), u1(x), u2(x), u3(x) are real-valued functions while f0, f1 are complex-valued
functions.

3.1. Convolution for the quaternions in terms of the proposed representation. With the
above observations, we have to define new convolution for our proposed representation
for the quaternions. This new convolution is different from that given in [6, 1].

Definition 3.7 (The convolution of quaternion-valued functions). Let F,G ∈ L1(Rn;H)

∩L2(Rn;H) with F = F0 + jF 1 and G = G0 + jG1, then their convolution can be denoted
as F ⋆ G and defined as

(F ⋆ G)(t) :=

∫
Rn

F0(x)G0(t− x)dnx−
∫
Rn

∨
F 1(x)G1(t− x)dnx

+ j

∫
Rn

F 1(x)G0(t− x)dnx+

∫
Rn

⊻
F 0(x)G1(t− x)dnx

 .

(3.13)

Remark 3.3. Let F,Ψ ∈ L1(Rn;H) ∩ L2(Rn;H) with F = F0 + jF 1 and Ψ = Ψ0 + jΨ1,
then their convolution can be represented as

(F ⋆
⊻
Ψ)(t) :=

(
(F0 ∗

⊻
Ψ0) + (

∨
F 1 ∗

⊻
Ψ1)

)
(t) + j

(
(F 1 ∗

⊻
Ψ0)− (

⊻
F 0 ∗

⊻
Ψ1)

)
(t).

Definition 3.8 (The space Lp(Rn;H)). The space Lp(Rn;H), 1 ≤ p <∞ denotes the space
of all measurable quaternion-valued functions f on Rn such that∫

Rn

|f(x)|p dnx <∞.

This space is a normed linear space.

Definition 3.9. The Fourier transform of a quaternion-valued function F = f0 + jf1 is
defined as

FH[F ](ξ) = F [f0](ξ) + jF [ f1](ξ),

where F [f ](ξ) =
∫
Rn

f(t) e−2πi⟨ξ,t⟩dnt, provided the integral exists. The inverse Fourier

transform is defined as

F−1
H [FH[F ]](t) = F (t) = F−1[f̂0](t) + jF−1[

⊻

f̂1](t),

where F−1[f̂ ](t) =
∫
Rn

f̂(ξ) e2πi⟨ξ,t⟩dnξ, provided the integral exists.
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Remark 3.4. Let F,G ∈ L1(Rn;H) ∩ L2(Rn;H) with F = F0 + jF 1 and G = G0 + jG1,
then the convolution theorem for quaternion-valued function expressed in proposed rep-
resentation holds:-

(3.14) FH[(F ⋆ G)(t)](ω) = FH[F ](ω)FH[G](ω).

Proposition 3.3. Let Ψ ∈ L2(Rn;H) and ξ, x ∈ Rn. Let rξ ∈ SO(n) be a rotation which sends
ξ/|ξ| to (0, ..., 0, 1) ∈ Rn. Then we have

(3.15) FH[Ψx,ξ](ω) = |ξ|−
n
2

[
Ψ̂0(|ξ|−1

rξω)e
−2πi⟨ω,x⟩ + j

⊻

Ψ̂1(|ξ|−1
rξω)e

2πi⟨ω,x⟩

]
.

Proof.

FH[Ψx,ξ](ω) = F [Ψ0 x,ξ](ω) + jF [Ψ1 x,ξ](ω)

= F [Ψ0 x,ξ](ω) + j
∨

F [Ψ1 x,ξ](ω).

We know that Ψℓ x,ξ(t) = |ξ|
n
2 Ψℓ(|ξ|rξ(t− x)) ∀ ℓ = 0, 1.

F [Ψℓ x,ξ(t)](ω) =

∫
Rn

|ξ|
n
2 Ψℓ(|ξ|rξ(t− x))e−2πi⟨ω,t⟩dnt

=

∫
Rn

|ξ|
n
2 Ψℓ(rξu)e

−2πi⟨ω,|ξ|−1u+x⟩|ξ|−ndnu

=

∫
Rn

|ξ|
−n
2 Ψℓ(rξu)e

−2πi⟨|ξ|−1ω,u⟩dnu

 e−2πi⟨ω,x⟩

= |ξ|−
n
2 Ψ̂ℓ(|ξ|−1

rξω) e
−2πi⟨ω,x⟩.

Therefore, we have

FH[Ψx,ξ](ω) = |ξ|−
n
2

[
Ψ̂0(|ξ|−1

rξω)e
−2πi⟨ω,x⟩ + j

⊻

Ψ̂1(|ξ|−1
rξω)e

2πi⟨ω,x⟩

]
.

□

Definition 3.10 (Quaternionic Moritoh transfrom). Let F and ψ ∈ L1(Rn;H)∩L2(Rn;H).
Then the quaternion Moritoh wavelet transform or simply quaternionic Moritoh trans-
form can be denoted by (HWψF )(x, ξ) and defined as

(3.16) (HWΨF )(x, ξ) = (F ⋆
⊻
Ψξ)(x).

Where
⊻
Ψξ(t) =

⊻
Ψ0(|ξ|rξt)− j

⊻
Ψ1(|ξ|rξt).

Definition 3.11 (Admissibility condition for quaternionic Moritoh transform). An quater-
nion Moritoh wavelet ψ ∈ L1(Rn;H) ∩ L2(Rn;H) is said to be admissible quaternion
Moritoh wavelet if it satisfy the following admissibility condition

(3.17) CΨ =

∫
Rn

|ξ|−n
∣∣∣FH[Ψ](|ξ|−1

rξω)
∣∣∣2dnξ <∞.

Applying the change of variable from ξ to τ = |ξ|−1
rξω we get,

(3.18) CΨ =

∫
Rn

|τ |−n|FH[Ψ](τ)|2dnτ <∞.
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Theorem 3.6. For any F ∈ L1(Rn;H) ∩ L2(Rn;H), the quaternion Moritoh transform defined
by (3.16) satisfies the following identity:-

(HWΨF )(x, ξ) =(WΨ0
F0)(x, ξ) + (WΨ1

∨
F 1)(x, ξ)

+ j

(
(WΨ0

F 1)(x, ξ)− (WΨ1

⊻
F 0)(x, ξ)

)
.

Proof. Using definition of convolution, we have

(HWΨF )(x, ξ) =
(
F ⋆

⊻
Ψξ

)
(x)

=
[(
F0 + jF 1

)
⋆
(⊻
Ψ0 ξ − j

⊻
Ψ1 ξ

)]
(x)

= (F0 ∗
⊻
Ψ0 ξ)(x) + (

∨
F1 ∗

⊻
Ψ1 ξ)(x) + j

(
(F 1 ∗

⊻
Ψ0 ξ)− (

⊻
F0 ∗

⊻
Ψ1 ξ)

)
(x).

(3.19)

Now, (
⊻
F 0 ∗

⊻
Ψ1 ξ

)
(x) =

∫
Rn

⊻
F 0(t)

⊻
Ψ1 ξ(x− t)dnx = (WΨ1

⊻
F 0)(x, ξ).

Using this observation, in the equation (3.19), we get the result. □

By the straight forward calculation, one can get the following basic properties of QMT.

Proposition 3.4. For F,G ∈ L1(Rn;H) ∩ L2(Rn;H), α ∈ H, and admissible quaternionic
Moritoh wavelets Ψ,Φ ∈ L1(Rn;H) ∩ L2(Rn;H) following are true

(i) (HWΨ(F +G))(x, ξ) = (HWΨF )(x, ξ) + (HWΨG)(x, ξ)
(ii) (HWΨαF )(x, ξ) = α(HWΨF )(x, ξ)

(iii) (HWαΨF )(x, ξ) = (HWΨF )(x, ξ)α
(iv) (HWΨ+ΦF )(x, ξ) = (HWΨF )(x, ξ) + (HWΦF )(x, ξ).

Lemma 3.2. Suppose F,Ψ ∈ L1(Rn;H) ∩ L2(Rn;H). The quaternionic Moritoh transform
satisfies the following property:-

FH[(HWψf)(x, ξ)](ω) = |ξ|
−n
2

[
f̂0(ω)Ψ̂0(|ξ|−1

rξω) +
∨
f̂1(ω)Ψ̂1(|ξ|−1

rξω)

+ j

{⊻

f̂1(ω)Ψ̂0(|ξ|−1
rξω)− f̂0(ω)Ψ̂1(|ξ|−1

rξω)

}]
.

(3.20)

However, for the sake of brevity in the calculation, we will use the following equation

FH[(HWψf)(x, ξ)](ω) = |ξ|
−n
2 FH[F ](ω)FH[Ψ](|ξ|−1

rξω).(3.21)

Proof. Using the convolution theorem for the quaternionic Fourier transform, we have

FH[(HWψF )(x, ξ)](ω) = FH[(F ⋆
⊻
Ψξ)(x)](ω) = FH[F ](ω)FH[

⊻
Ψξ](ω)

FH[(HWΨF )(x, ξ)](ω) = |ξ|
−n
2 FH[F ](ω)FH[Ψ](|ξ|−1

rξω).

In view of the equation (3.10) we get,

FH[(HWΨF )(x, ξ)](ω) = |ξ|
−n
2

[
f̂0(ω)Ψ̂0(|ξ|−1

rξω) +
∨
f̂1(ω)Ψ̂1(|ξ|−1

rξω)

+ j

{⊻

f̂1(ω)Ψ̂0(|ξ|−1
rξω)− f̂0(ω)Ψ̂1(|ξ|−1

rξω)

}]
.
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□

Remark 3.5. The equation (3.21) can be re-written as

(3.22) (HWψF )(x, ξ) =

∫
Rn

|ξ|
−n
2 FH[F ](ω)FH[Ψ](|ξ|−1

rξω)e
2πi⟨ω,x⟩dnω.

Theorem 3.7 (Quaternionic orthogonality relation). Let ψ, ϕ ∈ L1(Rn;H)∩L2(Rn;H). Sup-
pose (HWψF )(x, ξ), (HWϕG)(x, ξ) are quaternionic Moritoh transforms of F and G as defined
in (3.16) then for any pair of quaternion-valued functions F,G ∈ L1(Rn;H)∩L2(Rn;H) we have∫

Rn

∫
Rn

(HWψF )(x, ξ)(HWϕG)(x, ξ)d
nxdnξ = Cψ,ϕ⟨F,G⟩,(3.23)

where Cψ,ϕ is the admissibility condition associated with the quaternion-valued wavelets ψ and ϕ
is given by:-

Cψ,ϕ =

(∫
Rn

|ω|−nFH[ψ](ω)FH[ϕ](ω)d
nω

)
.

Proof. In view of the equation (3.22), we have∫
Rn

∫
Rn

(HWψF )(x, ξ)(HWϕG)(x, ξ)d
nxdnξ

=

∫
Rn

∫
Rn

∫
Rn

|ξ|
−n
2 FH[F ](τ)FH[ψ](|ξ|−1

rξτ)e
2πi⟨τ,x⟩dnτ


∫
Rn

|ξ|
−n
2 FH[G](σ)FH[ϕ](|ξ|−1

rξσ)e2πi⟨σ,x⟩dnσ

dnxdnξ
=

∫
Rn

∫
Rn

∫
Rn

|ξ|−nFH[F ](τ)FH[ψ](|ξ|−1
rξτ)

(
δ(τ − σ)

)
FH[ϕ](|ξ|−1

rξσ)

FH[G](σ)d
nτdnσdnξ

=

∫
Rn

∫
Rn

|ξ|−nFH[F ](τ)FH[ψ](|ξ|−1
rξτ)FH[ϕ](|ξ|−1

rξτ)FH[G](τ)d
nτdnξ

=

∫
Rn

FH[F ](τ)

(∫
Rn

|ξ|−nFH[ψ](|ξ|−1
rξτ)FH[ϕ](|ξ|−1

rξτ)d
nξ

)
FH[G](τ)d

nτ

=

∫
Rn

FH[F ](τ)

(∫
Rn

|ω|−nFH[ψ](ω)FH[ϕ](ω)d
nω

)
FH[G](τ)d

nτ

= Cψ,ϕ

∫
Rn

FH[F ](τ)FH[G](τ)d
nτ

= Cψ,ϕ

∫
Rn

F (x)G(x)dnx.

□
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Corollary 3.1.

(3.24)
∫
Rn

∫
Rn

(HWψF )(x, ξ)(HWψG)(x, ξ)d
nxdnξ = Cψ⟨F,G⟩L2(Rn;H).

Corollary 3.2. For F = G and ψ = ϕ we have the following result:-∫
Rn

∫
Rn

|(HWψF )(x, ξ)|2Hd
nxdnξ = Cψ∥F∥2L2(Rn;H).(3.25)

Consequently, ∥(HWψF )(x, ξ)∥L2(Rn;H) =
√
Cψ∥F∥L2(Rn;H).

Theorem 3.8 (Reconstruction formula). The quaternion-valued functions F ∈ L2(Rn;H) can
be reconstructed from their quaternionic Moritoh transforms by

F (x) =
1

Cψ

∫
Rn

∫
Rn

(HWψF ) (x, ξ) |ξ|
n
2 ψξ(|ξ|rξ(t− x))dnxdnξ.

Proof. By orthogonality relation (3.24), we have

Cψ⟨F,G⟩ =
∫
Rn

∫
Rn

(HWψF ) (x, ξ) (HWψG) (x, ξ)d
nxdnξ

=

∫
Rn

∫
Rn

(HWψF ) (x, ξ)

∫
Rn

G(t)
⊻
ψξ(x− t)dnt

 dnxdnξ

=

∫
Rn

∫
Rn

(HWψF ) (x, ξ)

∫
Rn

G(t)ψξ(t− x)dnt

 dnxdnξ

=

∫
Rn

∫
Rn

(HWψF ) (x, ξ)

∫
Rn

ψξ(t− x)G(t)dnt

 dnxdnξ

=

∫
Rn

∫
Rn

∫
Rn

(HWψF ) (x, ξ)ψξ(t− x)dnxdnξ

G(t)dnt.

Consequently, we get the result. □

3.2. Uncertainty Principle. The uncertainty principle says that if we are trying to get
sharp localization of a signal in time domain then we have compromise with sharp local-
ization property in frequency domain and vice-versa. A non-zero function and its Fourier
transform cannot both be sharply localized [5]. In this section we will discuss the uncer-
tainty principle of quaternion-valued functions and quaternion Moritoh wavelet trans-
form.

Lemma 3.3. For ω, b, x, ξ ∈ Rn and quaternionic Moritoh transform (HWψF )(x, ξ) of the
quaternion-valued function F , following result holds good

(3.26)
∫
Rn

∫
Rn

|(ω − b)FH(HWψF )(x, ξ)|2dnωdnξ = Cψ

∫
Rn

|(ω − b)FH[F ](ω)|2dnω.
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Proof. By the equations (3.21) and (3.17), we have∫
Rn

∫
Rn

|(ω − b)FH(HWψF )(x, ξ)|2dnωdnξ

=

∫
Rn

∫
Rn

|ω − b|2
∣∣∣|ξ|−n/2FH[F ](ω)FH[Ψ](|ξ|−1

rξω)
∣∣∣2dnωdnξ

=

∫
Rn

|(ω − b)FH[F ](ω)|2Cψ dnω.

□

Theorem 3.9. Let Ψ ∈ L2(Rn;H) be an admissible quaternion Moritoh wavelet, then for any
function F ∈ L2(Rn;H) and a, b ∈ Rn, the following uncertainty inequality holds:{∫

Rn

∫
Rn

|(x− a)(HWΨF )(x, ξ)|2dnx dnξ
} 1

2

×
{∫
Rn

|(ω − b)FH[F ](ω)|2dnω
} 1

2

≥ n

4π

√
Cψ∥F∥2L2(Rn;H)

(3.27)

Proof. By Corollary 2.8 of [5], for F ∈ L2(Rn) and a, b ∈ Rn, we have,∫
Rn

|x− a|2|F (x)|2dnx

∫
Rn

|ω − b|2
∣∣∣F̂ (ω)∣∣∣2dnω

 ≥ n2

16π2
∥F∥4.

As HWψF (x, ξ) ∈ L2(R2n,H) we can extend above result as follows:∫
Rn

|x− a|2|HWψF (x, ξ)|2dnx

 1
2
∫
Rn

|ω − b|2|FH[(HWψF )(x, ξ)](ω)|2dnω

 1
2

≥ n

4π

∫
Rn

|(HWψF )(x, ξ)|2dnx.

Integrating w.r.t. ξ we get,

∫
Rn

∫
Rn

|x− a|2|HWψF (x, ξ)|2dnx

 1
2
∫
Rn

|ω − b|2|FH[(HWψF )(x, ξ)](ω)|2dnω

 1
2

dnξ

≥ n

4π

∫
Rn

∫
Rn

|(HWψF )(x, ξ)|2dnxdnξ.

Applying Cauchy- Schwartz inequality and using the equation (3.25) we get,∫
Rn

∫
Rn

|x− a|2|HWψF (x, ξ)|2dnxdnξ

 1
2

×

∫
Rn

∫
Rn

|ω − b|2|FH[(HWψF )(x, ξ)](ω)|2dnωdnξ

 1
2

≥ n

4π
Cψ∥F∥2L2(Rn;H).
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Using (3.26) in second term of L.H.S. we get,∫
Rn

∫
Rn

|x− a|2|HWψF (x, ξ)|2dnxdnξ

 1
2
Cψ ∫

Rn

|(ω − b)FH[F ](ω)|2dnω

 1
2

≥ n

4π
Cψ∥F∥2L2(Rn;H).

We achieve the required result (3.27) after simplification. □

4. CONCLUSION

The approximation of the Moritoh transform of the ultra distribution on generalised
Sobolev space and the estimation of admissible Moritoh wavelets with narrow width have
been established. The adjoint formula for the Fourier transform has been extended to the
Moritoh transform. It has been shown that for |ξ| < 1, the Moritoh transform of the func-
tion in Lp space is a tempered distribution. The one-dimensional quaternionic transform
and the two-dimensional quaternionic transform have been defined, and relevant theory
has been developed in [6, 2, 3, 1, 9, 15]. We are presenting the study of the quaternionic
transform for n-dimension. Generally, we write the quaternions as an expression hav-
ing three pure quaternions with a real coefficient. We are giving a new representation of
quaternions that consists of only one pure quaternion with the coefficient in the complex
number field. The advantage of our representation is that we need only one pure quater-
nion, namely, j, which enables us to get rid of the complexity of performing algebraic
operations on two quaternions, especially the product of quaternions.

With the help of our representation, one can get the convolution and other important
theorems for quaternionic integral transforms in n-dimension. Although we have derived
the theorems or results for quaternion-valued functions and quaternionic transforms, we
can also get these results for complex-valued Moritoh transforms.

• The results boil down to a complex-valued Moritoh transform if we take f1 = 0
and ψ1 = 0 in the results of QMT;

• For real-valued functions f0, ψ0 and by making other components of the function
and wavelet zero, we get the classical Moritoh transform.
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