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Preserver Problems on Infinite Divisibility and Separability

INDU LETHA1 and JILL K. MATHEW 2

ABSTRACT. This paper is committed in characterizing the preserving maps for the class of separable ma-
trices and a subclass of infinitely divisible matrices which are also separable. For this, an association between
the classes of separable matrices and infinitely divisible matrices is established. Also, several properties and
attributes of the above mentioned classes are stated and proved.

1. INTRODUCTION

Preserving problems can be regarded as century old problems. Many outstanding and
interesting works have been carried out in this field and still it remains an area which can
be explored much further.
Characterizing preserving maps for different sets, properties and classes is the main gist
of preserving problems. A linear map from a matrix algebra into itself which preserve cer-
tain invariant properties can be called a linear preserver. Characterizing linear preserving
maps mentioned in [11] drew our attention towards other works related to preserving
problems like Commutativity Preserving Maps [15], Linear Maps on Mn(R) Preserving
Schur Stable Matrices [2] etc. We found in our survey that the characterization of preserv-
ing maps for the class of infinitely divisible matrices is an unexplored problem.
We focus our attention mainly on preserving infinitely divisibility and separability. For
that, the concept of infinitely divisible matrix and separable matrix are discussed in de-
tail. To define an infinitely divisible matrix, the notion of Hadamard product, Hadamard
power of a matrix and fractional Hadamard power of a matrix is needed and is introduced
in the sequel as follows.
Let A = [aij ] and B = [bij ] be two n × n matrices. Then the Hadamard product (or the
entry wise product) of A and B is the matrix A ◦B = [aijbij ], 0 ≤ i, j ≤ n.

Example:
[
4 −1
0 2

]
◦
[
1 8
5 3

]
=

[
4 −8
0 6

]
For each non-negative integerm, themth Hadamard power ofA is defined asA◦m = [amij ].

For example,
[
4 −1
0 2

]◦3
=

[
64 −1
0 8

]
.

For aij ≥ 0 and any non-negative r, the fractional Hadamard power is defined as A◦r =
[arij ].
A matrix whose fractional Hadamard power are all positive semidefinite is called infin-
itely divisible matrix ([6] & [10]). An example for an infinitely divisible matrix is Cauchy
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 is a 3× 3 Hilbert matrix which is a Cauchy matrix and it is infinitely

divisible. A detailed study of infinitely divisible matrices can be found in [4], [5] and
[8]. It is interesting to observe the techniques employed for proving infinite divisibility
across various types of matrices. A detailed study for infinite divisibility of a tridiagonal
matrix is carried out in [14]. It is proved that a tridiagonal matrix T is infinitely divisi-
ble if and only if T is a block diagonal matrix, where each non-zero diagonal block is a
positive semi definite matrix of order 1 or 2. The underlying idea of infinitely divisible
matrices is certainly the concept of positive semidefiniteness. At the starting point of the
study, we gave more attention to uncover new properties of infinitely divisible matrix,
the properties includes the closureness of the class of infinitely divisible matrices under
the operations + and ⊗. These properties are applied in Illustration 2.1 for obtaining the
construction method of a 4 × 4 infinitely divisible matrix with real sequence as entries.
Also, the necessary and sufficient condition for a matrix of the form A⊗B to be infinitely
divisible is derived.
A whole new insight was obtained when we came across the concept of separability of
matrices which is again a concept based on the idea of positive semidefiniteness. A ma-
trix X is said to be separable [1] if ∃ Ai ∈ Mn, Bi ∈ Mm which are positive semidefinite

matrices such that X =

k∑
i=1

(Ai ⊗Bi).

The matrix


20 7 10 2
7 26 2 12
10 2 23 −6
2 12 −6 28

 is separable, as it can be decomposed as follows:

[
1 2
2 4

]
⊗

[
2 −1
−1 2

]
+

[
5 2
2 2

]
⊗

[
3 2
2 4

]
+

[
1 0
0 3

]
⊗

[
3 −2
−2 4

]
, where each 2 × 2 ma-

trix is positive semi definite.

The separability of a quantum system in quantum information theory is of great impor-
tance. The separability of a quantum system can be determined by the separability of its
density matrix, which represents that quantum system. Many studies have been carried
out in this area. [1], [12], [7] and [13] are few among them. Going through the concept of
separability while gripping on to the idea of infinite divisibility, the notion of connecting
these two concepts together became evident. It was intriguing to see that two completely
unalike concepts are having some relation connecting them. All these connections were
because of the underlying common characteristic of positive semidefiniteness.
In this article, the second section comprises of some properties of infinitely divisible ma-
trix, including the closure property. Third section includes the result for separability con-
dition of a positive semi definite matrix of the formA⊗B and its decomposition technique

to the form
k∑

i=1

(Ai ⊗ Bi) and finally in the fourth section two preserver maps are charac-

terized, one for the class of separable matrices and another for the class of matrices which
is both separable and infinitely divisible.
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2. SOME PROPERTIES OF INFINITELY DIVISIBLE MATRIX

In this section, we give the definition of infinitely divisible matrix with few detailed
examples. Also, we have obtained some algebraic properties of infinitely divisible matrix.
Also we have established the necessary and sufficient conditions for infinitely divisible
matrix of the form A⊗B.

Definition 2.1. A matrix A = [aij ] ∈ Mn, where aij ≥ 0 is said to be infinitely divisi-
ble, if every fractional Hadamard power of A defined as Aor = [arij ]∀ r ≥ 0 is positive
semidefinite.

The following are few examples of infinitely divisible matrix:
10 0 2 0
0 3 0 0
2 0 12 0
0 0 0 3

 ,


16 4 6 2
4 10 2 3
6 2 22 6
2 3 6 13


The method in which the aforementioned infinitely divisible matrices are obtained is sim-
ilar to that demonstrated in Illustration 2.1. There are also many well known examples of
infinitely divisible matrices like Cauchy matrix, Pascal matrix etc [4].
Cauchy matrix:
Consider the Cauchy matrix with entires defined as C = [cij ] =

[
1

(λi+λj)

]
associated with

λ1, λ2, . . . , λn where 0 < λ1 ≤ λ2 ≤ · · · ≤ λn.
Let L2(0,∞) be the Hilbert space, whose elements are the functions on (0,∞) that are
square integrable with respect to the Lebesgue measure. Then the inner product between
two elements u1, u2 ∈ L2(0,∞) is defined by < u1, u2 >=

∫∞
0
u1(t)u2(t)dt.

Let ui(t) = e−tλi(1 ≤ i ≤ n). Then

(2.1) < u1, u2 >=

∫ ∞

0

e−tλie−tλjdt =

∫ ∞

0

e−t(λi+λj)dt =
1

(λi + λj)

Therefore the matrix C = [cij ] = [< ui, uj >] =
[

1
(λi+λj)

]
is a Gram matrix and hence it is

positive semidefinite.
We have the gamma function Γ(x) =

∫∞
0
e−ttx−1dt which can be applied for obtaining,

1

(λi + λj)r
=

1

Γ(r)

∫ ∞

0

e−t(λi+λj)tr−1dt ; r > 0

When r = 1, the above equation is reduced to Eq. (2.1).
Therefore, C◦r = [crij ] =

[
1

(λi+λj)r

]
is also a Gram matrix associated with ui(t) = e−tλi in

L2(0,∞) relative to the measure dµ(t) = tr−1

Γ(r) dt.
Thus proving C◦r to be positive semidefinite for all r > 0 and hence C to be infinitely
divisible.
Pascal Matrix:
The n×n Pascal matrix is defined as P = [pij ] =

[(
i+j
i

)]
= (i+j)!

i!j! ; i, j = 0, 1, 2, . . . , (n−1)

For example a 3× 3 Pascal matrix is P ′ =

1 1 1
1 2 3
1 3 6

.

The Pascal matrix is positive semidefinite which can be proved by representing it as a
Gram matrix. One such representation using gamma function is as follows:
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For x > 0, y > 0, Γ(x+ y + 1) =
∫∞
0
e−tt(x+y)dt. Also, Γ(n+ 1) = n!

Thus, for a matrix Q with entries [qij ] = [(i + j)!] = [Γ(x + y + 1)] is a gram matrix. A

Pascal matrix P = [pij ] =
[
(i+j)!
i!j!

]
is congruent to Q = [qij ] = [Γ(i + j + 1)]. Therefore

P is positive semidefinite. The infinite divisibility of P can be stated by proving that P is
congruent to Cauchy matrix which can be referred in [4].

We also have examples of classes of infinitely divisible matrices like:
(1) Every 2 × 2 positive semidefinite matrix with non negative entries is infinitely

divisible.
(2) Every positive semidefinite matrix with strictly positive entries is infinitely divis-

ible.
The following theorem obtained shows that the set of infinitely divisible matrices is closed
under addition.

Theorem 2.1. Let A1, A2, . . . , An be infinitely divisible, then A1 + A2 + · · · + An is infinitely
divisible.

Proof. We prove the case for the sum of two matrices, similar proof can be said in the case
of n matrices.
Suppose A,B ∈ Mn are infinitely divisible. (A+ B)or, for any r ≥ 0, can be decomposed
as Aor + Bor + S1 + S2 + · · · , where Si = αiA

or1 ◦ Bor2 and αi, r1, r2 ≥ 0 . Now, since
A and B are infinitely divisible matrices, Aor and Bor are positive semidefinite for any
r ≥ 0. And also by Schur’s theorem, Hadamard product of positive semidefinite matrices
is again positive semidefinite. Therefore, Si = αiA

or1 ◦ Bor2 , αi, r1, r2 ≥ 0 is positive
semidefinite. i.e., Every term in the decomposition of (A + B)or is positive semidefinite
for any r ≥ 0. Since the sum of positive semidefinite matrix is again positive semidefinite,
(A+B)or is positive semidefinite ∀ r ≥ 0. Thus A+B is infinitely divisible. □

The following definition is of tensor product.

Definition 2.2. The Tensor product (Kronecker product) of A = [aij ] ∈ Mn(F ) and B =
[bij ] ∈Mm(F ) is denoted byX = A⊗B ∈Mn(Mm(F )) and defined to be the block matrix

X = A⊗B =


a11B a12B · · · a1nB
a21B a22B · · · a2nB
. . . . . . . . . . . . . . . . . . . . . . . . .
an1B an2B · · · annB


More results and details on tensor product can be obtained by referring [9].

The following result obtained shows the preserving property of tensor product on the
class of infinitely divisible matrices.

Theorem 2.2. If A ∈ Mn(F ) and B ∈ Mm(F ) are infinitely divisible, then A ⊗ B is infinitely
divisible.

Proof. SinceA andB are infinitely divisible,Aor andBor are positive semidefinite ∀ r ≥ 0.
Therefore, Aor ⊗Bor is positive semidefinite ∀ r ≥ 0.

(A⊗B)or = [aijB]or = [arijB
or] = Aor ⊗Bor ∀ r ≥ 0

Therefore, by above relation (A ⊗ B)or is positive semidefinite ∀ r ≥ 0. Thus A ⊗ B is
infinitely divisible. □
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Combining 2.1 and 2.2, we can construct infinite number of infinitely divisible matrices.
Construction of a 4 × 4 infinitely divisible matrix with entries as real sequence is shown
in the following illustration.

Illustration 2.1.

Consider A2×2 =
[(

1
ni+j

)]
=

 1
n2

1
n3

1
n3

1
n4

 ; n ∈ N and B2×2 =
[(

1
n

)]
=

 1
n

1
n

1
n

1
n

 ; n ∈ N

Here A is positive semidefinite, since its eigenvalues are 0 and n2+1
n4 . B is also positive

semidefinite, since it is congruent to flat matrix. Clearly A and B are infinitely divisible
matrices, since both are 2× 2 positive semidefinite matrices.
Hence, in particular, Ak =

[(
1

ni+j

)k] and Bk =
[(

1
n

)k] are all positive semidefinite for all

k ∈ Z+. Thus, S = A1 ⊗B1 +A2 ⊗B2 + · · ·+Am ⊗Bm is infinitely divisible.

i.e., S =

 1
n2

1
n3

1
n3

1
n4

⊗
 1

n
1
n

1
n

1
n

+
( 1

n2 )
2 ( 1

n3 )
2

( 1
n3 )

2 ( 1
n4 )

2

⊗
( 1n )2 ( 1n )

2

( 1n )
2 ( 1n )

2

+· · ·+

( 1
n2 )

m ( 1
n3 )

m

( 1
n3 )

m ( 1
n4 )

m

⊗( 1n )m ( 1n )
m

( 1n )
m ( 1n )

m



=⇒ S =



1
n3

1
n3

1
n4

1
n4

1
n3

1
n3

1
n4

1
n4

1
n4

1
n4

1
n5

1
n5

1
n4

1
n4

1
n5

1
n5


+



1
n6

1
n6

1
n8

1
n8

1
n6

1
n6

1
n8

1
n8

1
n8

1
n8

1
n10

1
n10

1
n8

1
n8

1
n10

1
n10


+ · · ·+



1
n3k

1
n3k

1
n4k

1
n4k

1
n3k

1
n3k

1
n4k

1
n4k

1
n4k

1
n4k

1
n5k

1
n5k

1
n4k

1
n4k

1
n5k

1
n5k



=⇒ S =



m∑
i=1

1

n3k

m∑
i=1

1

n3k

m∑
i=1

1

n4k

m∑
i=1

1

n4k

m∑
i=1

1

n3k

m∑
i=1

1

n3k

m∑
i=1

1

n4k

m∑
i=1

1

n4k

m∑
i=1

1

n4k

m∑
i=1

1

n4k

m∑
i=1

1

n5k

m∑
i=1

1

n5k

m∑
i=1

1

n4k

m∑
i=1

1

n4k

m∑
i=1

1

n5k

m∑
i=1

1

n5k



is infinitely divisible.

□

Results on preserving properties of tensor product of rank-one Hermitian matrices can be
referred from [17].
The following three results have been obtained, providing insight into the structure of
tensor product of two matrices, their symmetric properties, condition for them to be in-
finitely divisible.
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Lemma 2.1. If X = A ⊗ B ∈ Mn(Mm(F )) is symmetric with atleast one non-zero diagonal
entry then A ∈Mn(F ) and B ∈Mm(F ) are symmetric.

Proof. Let X = A⊗B ∈Mn(Mm(F )) be symmetric.
Therefore, XT = X

⇒ AT⊗BT = (A⊗B) ⇒


a11B

T a21B
T · · · an1B

T

a12B
T a22B

T · · · an2B
T

. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
a1nB

T a2nB
T · · · annB

T

 =


a11B a12B · · · a1nB
a21B a22B · · · a2nB
. . . . . . . . . . . . . . . . . . . . . . . . .
an1B an2B · · · annB


Clearly for X to be symmetric, if B is symmetric then A should be symmetric and if B is
skew-symmetric then A should be skew-symmetric. Since there is alteast one diagonal
entry of X which is of the form aiibjj ̸= 0,where i = 1, 2, . . . , n and j = 1, 2, . . . ,mn; then
there exist atleast one aii ̸= 0. Then by equating corresponding matrix block, aiiBT =
aiiB ⇒ BT = B ⇒ B is symmetric⇒ A is symmetric. □

Lemma 2.2. If X = A ⊗ B ̸= 0 ∈ Mn(Mm(F )) is positive semidefinite, then A and B are
symmetric.

Proof. Let X = A⊗B ̸= 0 ∈Mn(Mm(F )) be positive semidefinite. Then,
Sum of diagonal entries of X = Sum of the eigenvalues of X ≥ 0.
If sum of diagonal entries of X = 0
⇒Sum of eigenvalues of X = 0
⇒Every eigenvalues of X are zero
⇒ X is nil potent matrix, which is a contradiction, since X is symmetric.
Therefore, sum of diagonal entries is greater than 0. Thus there exist atleast one non-zero
diagonal entry. Then by Lemma 2.1, A and B are symmetric. □

Corollary 2.1. If X = A ⊗ B ̸= 0 ∈ Mn(Mm(F )) is infinitely divisible, then A and B are
symmetric.

Proof. Clearly, X = A⊗B ̸= 0 being infinitely divisible impliesX is positive semidefinite.
Then by Lemma 2.2, A and B are symmetric. □

The subsequent theorem (Theorem 2.3) obtained offers a necessary and sufficient condi-
tion for a matrix of order 4 × 4 of the form X = A ⊗ B ∈ Mn(Mm(F )) to be infinitely
divisible.

Theorem 2.3. X = A⊗B ∈Mn(Mm(F )) such that mn = 4 is an infinitely divisible matrix if
and only if either A and B are infinitely divisible or −A and −B are infinitely divisible.

Proof. Let X = [xij ] = A ⊗ B ∈ Mn(Mm(F )) be infinitely divisible. Clearly, by Corollary
2.1, A and B are symmetric and xij ≥ 0.
Therefore, entries of A and B are either all non-negative or all non-positive. We split the
proof into three cases based on orders of A and B.
Case 1: If A ∈M1(F ) and B ∈M4(F ), then X = B, nothing to prove.
Case 2: If A ∈M4(F ) and B ∈M1(F ), then X = A, nothing to prove.
Case 3: Let A,B ∈M2(F )
Since X is infinitely divisible,the eigenvalues of Xor = (Aor ⊗Bor) is non-negative. Note
that the eigenvalue of Xor = (Aor ⊗ Bor) are product of eigenvalues of Aor and Bor for
each r.
Now, for any r0, some eigenvalues of Aor or Bor are positive and the rest are negative is a
non-occuring case, since this will make the eigenvalues of (Aor ⊗Bor) negative.
For (Aor ⊗ Bor) to be positive semidefinite ∀ r ≥ 0, the occuring possibilities can be clas-
sified into three cases.
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Case (i): Aor and Bor are positive semidefinite ∀ r ≥ 0.
i.e. A and B are infinitely divisible.

Case (ii): Aor and Bor are negative semidefinite ∀ r ≥ 0.
−Aor and −Bor are positive semidefinite ∀ r ≥ 0.
−A and −B are infinitely divisible.

Case (iii): Aor and Bor are positive semidefinite for some r0 and negative
semidefinite for remaining r ≥ 0.
Consider the case for r = 1.
Suppose A and B are 2× 2 positive semidefinite matrices.
⇒ A and B are infinitely divisible.
Similarly, if A and B are 2× 2 negative semidefinite matrices.
⇒ −A and −B are 2× 2 positive semidefinite matrices.
⇒ −A and −B are infinitely divisible.

Therefore, from Case (1), (2) and (3), we can conclude that X is infinitely divisible only
when A and B are infinitely divisible or −A and −B are infinitely divisible.
Conversely, if A and B are infinitely divisible ⇒ A⊗B is infinitely divisible, by Theorem
2.2.
Or if −A and −B are infinitely divisible ⇒ −A ⊗ −B = A ⊗ B is infinitely divisible, by
Theorem 2.2. □

The following theorem (Theorem 2.4) obtained is a generalization of the preceding theo-
rem.

Theorem 2.4. LetX = A⊗B ∈Mn(Mm(F )) with strictly positive entries is infinitely divisible
matrix if and only if either A and B are infinitely divisible with strictly positive entries or −A and
−B are infinitely divisible with strictly positive entries.

Proof. The method of proving this theorem is very much similar to the previous theorem
but with more cases and possibilities.
Let X = [xij ] = A ⊗ B ∈ Mn(Mm(F )) be infinitely divisible with xij > 0. Clearly, by
Corollary 2.1, A and B are symmetric and entries of A and B are either all positive or
negative. We split the proof into three cases based on orders of A and B.
Case 1: If A ∈M1(F ) and B ∈Mm(F ) then X = B, nothing to prove.
Case 2: If A ∈Mn(F ) and B ∈M1(F ) then X = A, nothing to prove.
Case 3: Let A ∈Mn(F ) and B ∈Mm(F ) where m,n ̸= 1
SinceX is infinitely divisible, the eigenvalues ofXor = (Aor⊗Bor) is non-negative. As in
Theorem 2.3, for (Aor ⊗Bor) to be positive semidefinite ∀ r ≥ 0, the occuring possibilities
can be classified into three cases.

Case (i): Aor and Bor are all positive semidefinite ∀ r ≥ 0.
i.e. A and B are infinitely divisible.

Case (ii): Aor and Bor are negative semidefinite ∀ r ≥ 0.
−(Aor) and −(Bor) are positive semidefinite ∀ r ≥ 0.
In particular, for r = 1, i.e. −A and −B are positive semidefinite.
Here again we consider two cases:

Case (a): All the entries of −A and −B are strictly positive.
−A and −B are infinitely divisible.

Case (b): All the entries of −A and −B are strictly negative.
⇒ Trace(−A) < 0.
But Trace (−A) = Sumof eigenvalues of A ≥ 0 ,
which is a contradiction.
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Similar conclusion can be obtained for B.
Thus, Case (b) is not possible.

Case (iii): Aor and Bor are positive semidefinite for some r0 and negative semidefinite
for remaining r ≥ 0. Here again, we consider two cases.

Case (a): Suppose entries of A and B are all positive. Clearly, Aor0

and Bor0 are infinitely divisible. Therefore, Aom = (Ar0)o
m
r0 is

positive semidefinite ∀m ≥ 0. Thus A is infinitely divisible.
Similarly, B is also infinitely divisible.
⇒ A and B are infinitely divisible.

Case (b): Suppose entries of A and B are all negative.
Considering the case for r = 1.
Again, it is required to consider two cases.

Case (b1): A and B are negative semidefinite.
−A and −B are positive semidefinite with
all entries of −A and −B all positive.
⇒ −A and −B are infinitely divisible.

Case (b2): A and B are positive semidefinite.
But Case(b2) is not possible.
Proof similar to Case(3(ii(b))) of this theorem.

Therefore, from Case (1), (2) and (3), we can conclude that X is infinitely divisible with
positive entries only whenA andB are infinitely divisible with positive entries or −A and
−B are infinitely divisible with positive entries.
Converse part of the theorem is similar to the proof of Theorem 2.3. □

3. DECOMPOSITION OF A SEPARABLE MATRIX

In this section, we introduce the concept of separability of a matrix. As mentioned ear-
lier the separability of a matrix is of much importance. Here, the separability of a positive
semi definite matrix of the form A⊗B is proved using a decomposition techniques which
we have obtained.

Definition 3.3. A matrix X ∈ Mn(Mm(F )) is said to be separable, if there exists positive

semidefinite matrices Ai ∈Mn(F ) and Bi ∈Mm(F ) such that X =

k∑
i=1

Ai ⊗Bi.

Notice from the above form of separable matrix[1] that it is always positive semidefinite.
Combining this with the result that positive semidefinite matrices with positive entries
are infinitely divisible [4], we can conclude that separable matrix with positive entries is al-
ways infinitely divisible.

One of the important existing result on separability is the Peres-Horodecki separability
criterion for density matrices which is a necessary condition for separability[16], stating
that the matrix (ATp) obtained by partial transposition of A is positive semi-definite. The
following is an illustration of judging the separability of 2-qubit family of Werner states,
ρ = q|ψ−⟩⟨ψ−| + (1−q)

4 I(4). In [3], Azuma and Ban has given the density matrix for the
2-qubit family of Werner states. It has a single real parameter and varies from inseparable
state to separable state according to the value of its parameter. Using Peres-Horodecki
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criterion, we can fix the critical point of the parameter between the separable and insepa-

rable states. Its density matrix is W (q) = 1
4


1− q 0 0 0
0 1 + q −2q 0
0 −2q 1 + q 0
0 0 0 1− q

.

Its partial transposition is W̃ (q) = 1
4


1− q 0 0 0
0 1 + q −2q 0
0 −2q 1 + q 0
0 0 0 1− q

. The least eigen value

of W̃ (q) is (1−3q)
4 . Hence,W (q) is inseparable for 1

3 < q ≤ 1. If inseparable, then it is called
entangled.
It is interesting to see that every infinitely divisible matrix, X of the the formA⊗B satisfy
Peres-Horodecki criterion.
The next two results obtained (Theorem 3.5 and Corollary 3.2) prove the separability of

such a matrix along with its decomposition to the form
k∑

i=1

Ai ⊗Bi.

Theorem 3.5. A positive semidefinite matrix X = A ⊗ B ∈ Mn(Mm(R)) is always separable

and also X can be decomposed as X =

k∑
i=1

Ai ⊗ Bi, where Ai and Bi are positive semidefinite

rank one matrices.

Proof. Suppose X = A ⊗ B ∈ Mn(Mm(R)) is positive semidefinite implying that A and
B are symmetric.Also, A and B are both either positive semidefinite or negative semidef-
inite.
Case 1: A and B are both positive semidefinite. A being diagonalizable A can be written
as A = PDP−1 = PDPT , where D is a diagonal matrix with eigenvalues λ′is of A as
diagonal entries and P is a orthogonal matrix.
Now, D = D1 +D2 + · · ·+Dn, where Di is a diagonal matrix with non-zero element only
at (i, i)th position and all other entries are zero.
Therefore, A = PDPT = PD1P

T + PD2P
T + · · ·+ PDnP

T .
Let PDiP

T = Ai, where i = 1, 2, · · · , n . We will prove each Ai is positive semidefinite.
Consider A1 = PD1P

T .

Taking P =


x11 x12 · · · x1n
x21 x22 · · · x2n
. . . . . . . . . . . . . . . . . . . .
xn1 xn2 · · · xnn

 and D1 =


λ1 0 · · · 0
0 0 · · · 0
. . . . . . . . . . . . . .
0 0 · · · 0


We will have A1 = λ1


x211 x11x21 · · · x11xn1

x21x11 x221 · · · x21xn1
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
xn1x11 xn1x21 · · · x2n1

= λ1P1(say), where λ1 ≥ 0.

Clearly, every principal minors of P1 is non-negative making P1 positive semidefinite.
Therefore A1 is also positive semidefinite. Similarly, every Ai is positive semidefinite, for
i = 1, 2, · · · , n.
Therefore, A = A1 +A2 + · · ·+An, where each Ai is positive semidefinite.
Similarly, B = B1 +B2 + · · ·+Bm, where each Bi is positive semidefinite.
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X = A⊗B

= (A1 + · · ·+An)⊗ (B1 + · · ·+Bn)

= (A1 ⊗ (B1 + · · ·+Bm)) + · · ·+ (An ⊗ (B1 + · · ·+Bm))

= (A1 ⊗B1 + · · ·+A1 ⊗Bm) + · · ·+ (An ⊗B1 + · · ·+An ⊗Bm)

=

mn∑
i=1

A0
i ⊗B0

i ,where A0
i & B0

i are positive semidefinite matrices for i = 1, 2, . . . ,mn

Case 2: A and B are negative semidefinite.
Clearly, −A and −B are positive semidefinite. Proving as in Case 1,
−A = A

′

1 +A
′

2 + · · ·+A
′

n̄ and −B = B
′

1 +B
′

2 + · · ·+B
′

m̄, where A
′

i’s and B
′

j ’s are positive
semidefinite matrices for i = 1, 2, . . . , n̄ and j = 1, 2, . . . , m̄.

Now,X = A⊗B = (−A⊗−B) =

mn∑
i=1

A00
i ⊗B00

i ,whereA00
i &B00

i are positive semidefinite

matrices for i = 1, 2, . . . , m̄n̄

Therefore, in both cases X is separable. □

Corollary 3.2. An infinitely divisible matrix X = A ⊗ B ∈ Mn(Mm(R)) is always separable

and also X can be decomposed as X =

k∑
i=1

Ai ⊗ Bi, where Ai and Bi are positive semidefinite

rank one matrices.

Proof. An infinitely divisible matrix is always positive semidefinite. Then by Theorem

3.5, X = A⊗B is always separable and hence X can be decomposed as X =

k∑
i=1

Ai ⊗Bi,

where Ai and Bi are positive semidefinite rank one matrices. □

4. MAPS PRESERVING SEPARABLE MATRICES AND INFINITELY DIVISIBLE MATRICES

The aim of this section is to preserve the classes of separable matrices and a sub-class
of infinitely divisible matrices which is also separable.
The following theorem obtained describes the characterization of a preserving map which
preserves the class of separable matrices.

Theorem 4.6. Let X ∈ Mn(Mm(C)) be separable. Then ϕ : Mn(Mm(C)) → Mn(Mm(C))
preserves separability if and only if ϕ(X) =M∗XM where M = P ⊗Q, where P ∈Mn(C) and
Q ∈Mm(C).
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Proof. Let X ∈ Mn(Mm(C)) be separable. Therefore, X =

k∑
i=1

Ai ⊗ Bi, where Ai’s and

Bi’s are positive semidefinite matrices. Then

ϕ(X) =M∗XM

=M∗(

k∑
i=1

Ai ⊗Bi)M

= (P ⊗Q)∗[(A1 ⊗B1) + · · ·+ (Ak ⊗Bk)](P ⊗Q)

= (P ∗ ⊗Q∗)(A1 ⊗B1)(P ⊗Q) + · · ·+ (P ∗ ⊗Q∗)(Ak ⊗Bk)(P ⊗Q)

= P ∗A1P ⊗Q∗B1Q+ · · ·+ P ∗AkP ⊗Q∗BkQ

=

k∑
i=1

P ∗AiP ⊗Q∗BiQ

Here, P ∗AiP ’s and Q∗BiQ’s are positive semidefinite, since Ai’s and Bi’s are always
positive semidefinite, for i = 1, 2, . . . k. This makes ϕ(X) separable. Similar proof can
be obtained for ϕ(X) = M∗XTM . Thus ϕ preserves separability. Conversely, suppose
ϕ :Mn(Mm(C)) →Mn(Mm(C)) preserves separability.
i.e., ϕ(X) = X ′, where X and X ′ are separable. Therefore ∃ positive semidefinite matrices

Ai and Bi such that X =

k∑
i=1

Ai ⊗Bi. Therefore,

ϕ(X) = ϕ(

k∑
i=1

Ai ⊗Bi)

= ϕ(A1 ⊗B1 + · · ·+An ⊗Bn)

= ϕ(A1 ⊗B1) + · · ·+ ϕ(An ⊗Bn)

= Q1 + · · ·+Qn

Q1 . . . Qn are all are all separable: sinceAi⊗Bi are separable and ϕ preserves separability.

So, in general Qi =

αi∑
j=1

Cij ⊗ Dij , where Cij and Dij are rank 1 matrices and αi is the

number of elements in the summation of separability which are decomposed as rank 1
matrices.
Therefore, Ai ⊗Bi is a positive semidefinite matrix taken to another positive semidefinite
matrixCi1⊗Di1+· · ·+Ciαi

⊗Diαi
. SinceCij andDij are rank one matrices the summation

can be written as Ci ⊗Di.
i.e., ϕ(Ai ⊗ Bi) = Ci ⊗ Di, where Ai, Bi, Ci, Di are all positive semidefinite. In short we
can say positive semidefiniteAi is taken to another positive semidefinite Ci and a positive
semidefinite Bi is taken to another positive semidefinite Di.
Thus, there exist P and Q such that Ci = P ∗AiP and Di = Q∗BiQ
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Therefore,

ϕ(X) = Q1 + · · ·+Qn

= C1 ⊗D1 + · · ·+ Cn ⊗Dn

= P ∗A1P ⊗Q∗B1Q+ · · ·+ P ∗AnP ⊗Q∗BnQ

= (P ∗ ⊗Q∗)(A1 ⊗B1)(P ⊗Q) + · · ·+ (P ∗ ⊗Q∗)(An ⊗Bn)(P ⊗Q)

= (P ⊗Q)∗[(A1 ⊗B1) + · · ·+ (An ⊗Bn)](P ⊗Q)

= (P ⊗Q)∗(

k∑
i=1

Ai ⊗Bi)(P ⊗Q)

=M∗XM

Thus, ϕ(X) =M∗XM , where P ⊗Q, is the preserving map. □

Combining Theorem 4.6 with Schur triangularization theorem, there always exist a uni-
tary matrix U which is likely to be of the form U = P ⊗ Q such that ϕ(X) = U∗XU or
ϕ(X) = U∗XTU preserves separability and is a diagonal separable matrix.

The next theorem proved here gives a class of matrices which is both separable and infin-
itely divisible.

Theorem 4.7. SupposeX =

k∑
i=1

Ai⊗Bi ∈Mn(Mm(R)) is separable with xij ≥ 0 andAi’s and

B′
is being infinitely divisible. Then X is infinitely divisible.

Proof. Since Ai and Bi are infinitely divisible, Ai ⊗Bi is infinitely divisible.

By Theorem 2.1, X =

k∑
i=1

Ai ⊗Bi is infinitely divisible. □

A linear map ϕ defined ϕ : Mn(Mm(R)) → Mn(Mm(R)) as ϕ(X) = QTXQ or ϕ(X) =
QTXTQ where Q is an orthogonal matrix of the form Q = A ⊗ B and the column of Q
contains an eigen vector of X , maps separable and infinitely divisible matrix X to a diag-
onal matrix which is again separable and infinitely divisible.

From now on, the class of matrices in Theorem 4.7 will be denoted as ρinf . The matrix
S constructed in Illustration 2.1 is an element in ρinf . S is infinitely divisible as well as
separable and all the matrix involved in the decomposed form is also infinitely divisible.
The next theorem acquired yields the characterization of a map preserving ρinf .

Theorem 4.8. Let X ∈ ρinf and ϕ :Mn(Mm(R)) →Mn(Mm(R)) preserves ρinf if and only if
ϕ(X) =MTXM where M = P ⊗Q, where P ∈Mn(R) and Q ∈Mm(R) and entries of P ≥ 0
or entries of P ≤ 0 and entries of Q ≥ 0 or entries of Q ≤ 0.
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Proof. Assuming M = P ⊗Q and by the properties of P and Q mentioned in the theorem,
entries of M is always non-negative which provides entries of ϕ(X) to be always non-
negative. Let X ∈ ρinf . Since X is separable,

X =

k∑
i=1

Ai ⊗Bi

ϕ(X) =MTXM

= (PT ⊗QT )(

k∑
i=1

Ai ⊗Bi)(P ⊗Q)

= PTA1P ⊗QTB1Q+ · · ·+ PTAkP ⊗QTBkQ

By Theorem 4.6, ϕ(X) is always separable. Also, PTAiP and QTBiQ are Gram matrices
which are always positive semidefinite. Clearly, both are infinitely divisible as well. This
implies ϕ(X) to be infinitely divisible, by Theorem 2.1 and Theorem 2.2. Thus ϕ(X) ∈
ρinf . Therefore, ϕ preserves the matrix class ρinf . Conversely, suppose ϕ preserves ρinf .
By Theorem 4.6,

ϕ(X) =M∗XM, since separability preserving

= (P ⊗Q)∗X(P ⊗Q)

=

k∑
i=1

A
′

i ⊗B
′

i

where, A
′

i and B
′

i are infinitely divisible, since ϕ(X) ∈ ρinf . Clearly, entries of A
′

i and B
′

i

are ≥ 0, which implies entries of P ≥ 0 or entries of Q ≥ 0 and entries of P ≥ 0 or
entries of Q ≥ 0. □

5. CONCLUDING REMARKS

In this paper, we have seen some properties of classes of infinitely divisible matrices
and separable matrices which further led to the results on relations between these classes
of matrices. Also the main results were focused on the preserving maps on classes of in-
finitely divisible and separable matrices. The study continues with more preserving maps
and determination of different forms of separable matrix which helps in the separability
of a quantum system in quantum information theory.
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