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Some considerations about l’Hôpital-type rules for the
monotonicity

DAN ŞTEFAN MARINESCU and MIHAI MONEA

ABSTRACT. The aim of this note is to present some results associated to the l’Hôpital-type rules for the
monotonicity (LMR). We will prove the monotonicity of the ratio f(x)−f(c)

g(x)−g(c)
, were c is an arbitrary point from

the interval (a, b). Also, we extend LMR to the ratio of two higher-order differentiable functions. We complete
with some applications of our results.

1. INTRODUCTION

In [1], Anderson et al. proposed a rule by l’Hôpital type for the monotonicity of the ratio
of two differentiable functions. Later, Pinelis [3] developed this topic and proposed the
following result:

Theorem 1. Suppose −∞ ≤ a < b ≤ ∞ and let f, g : (a, b) → R be two differentiable functions
such that g′ ̸= 0 and f ′

g′ is increasing (decreasing) on the interval (a, b).
a) Assume that there are the finite limits f(a+) and g(a+). Then the function

h : (a, b) → R, h (x) =
f (x)− f (a+)

g (x)− g (a+)

is increasing (decreasing) on the interval (a, b).
b) Assume that there are the finite limits f(b−) and g(b−). Then the function

h : (a, b) → R, h (x) =
f (x)− f (b−)

g (x)− g (b−)

is increasing (decreasing) on the interval (a, b).

For example, let us consider the functions f, g : (1,∞) → R, defined by f(x) = ex − e,

g(x) = lnx. The function f ′

g′ : (1,∞) → R, f ′(x)
g′(x) = xex, is increasing on (1,∞). Then the

function

h : (1,∞) → R, h(x) =
f(x)− f(1+)

g(x)− g(1+)
=

ex − e

lnx
,

is also increasing on (1,∞).
Theorem 1 is called l’Hôpital’s rule for the monotonicity (LMR). The readers can find

more papers dedicated to this topic as [4], [5] or [6], where many applications of LMR are
proposed. Also, in [2], we find a counterexample for the reverse of LMR, that is a case
where the function f(x)−f(a+)

g(x)−g(a+) is monotone but f ′

g′ is not monotone (see Example 13 from
the mentioned paper).
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The aim of this note is to present some results associated to LMR. We extend Theorem 1
and we will prove the monotonicity of the ratio f(x)−f(c)

g(x)−g(c) , for every point c of the interval
(a, b) . We will show and prove some versions of LMR involving high order differentiable
functions. We also include some applications of our results.

We mention that in this paper, a non-decreasing function will be called an increasing
function, and a non-increasing function will be called a decreasing function.

2. THE MAIN RESULTS

Firstly, we present a version of LMR for the points of an open interval.

Theorem 2. Let −∞ ≤ a < b ≤ ∞ and f, g : (a, b) → R two differentiable functions such that
g′ (x) ̸= 0, for any x ∈ (a, b) , and f ′

g′ is increasing (decreasing) on (a, b) . Then the function

h : (a, b) → R, h (x) =

{
f(x)−f(c)
g(x)−g(c) , if x ̸= c
f ′(c)
g′(c) , if x = c

is increasing (decreasing) on (a, b) , for any c ∈ (a, b) .

Proof. We have limx→c h (x) = limx→c
f(x)−f(c)

x−c · x−c
g(x)−g(c) = f ′(c)

g′(c) = h (c) , so h is con-

tinuous in c and also h is continuous on (a, b) . We assume that f ′

g′ is increasing. Due
to Theorem 1, the function h is increasing on (a, c) . Then, for any x ∈ (a, c) , we have
h (x) ≤ limx↗c h (x) = h (c) and h is increasing on (a, c] . Similarly, we obtain that h is
increasing on [c, b). Now we conclude that h is increasing on (a, b). □

As a simple application of the previous result we obtain that the function

h : (0,∞) → R, h (x) =
{

ex−e
ln x , if x ̸= 1
e, if x = 1

is increasing on (0,∞) .
An interesting example is related to the weighted power mean. Let n be a positive integer

and a1, a2, ..., an ∈ (0,∞) . Let p1, p2, ..., pn ≥ 0 such that p1+p2+ ...+pn = 1. We consider
the function M : R → R defined by

M (x) =

{
(p1a

x
1 + p2a

x
2 + ...+ pna

x
n)

1
x , if x ̸= 0

ap1

1 ap2

2 ...apn
n if x = 0

.

To evaluate the the monotonicity of M we consider the function lnM. Denote

f (x) = ln (p1a
x
1 + p2a

x
2 + ...+ pna

x
n) and g (x) = x.

We have

lnM(x) =

{
f(x)
g(x) , x ̸= 0∑n

k=1 pk ln ak, x = 0
.

Note that the function lnM is continuous on R. Let us define the function

r(x) :=
f ′(x)

g′(x)
=

∑n
k=1 pka

x
k ln ak∑n

k=1 pka
x
k

, x ∈ R.

We have

r′ (x) =

∑n
k=1 pka

x
k ln

2 ak ·
∑n

k=1 pka
x
k − (

∑n
k=1 pka

x
k ln ak)

2

(
∑n

k=1 pka
x
k)

2 .
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From the Cauchy-Schwarz inequality, we obtain r′(x) ≥ 0, for all x ∈ R. This means that
r = f ′

g′ is an increasing function on R. Theorem 2 ensures the increasing monotony on R
of the function

lnM(x) =

{
f(x)−f(0)
g(x)−g(0) , x ̸= 0
f ′(0)
g′(0) , x = 0

.

Therefore, the weighted power mean M is increasing on R.
It is well known that the classic l’Hôpital’s rule can be applies successively. For exam-

ple, we have

lim
x→1

x3 − 3x+ 2

x4 − 4x+ 3
= lim

x→1

3x2 − 3

4x3 − 4
= lim

x→1

6x

12x2
=

1

2
.

Then we raise the question if a similar situation holds in a case of monotonicity. The
answer is positive as we will prove in Theorem 3. We will continue with some useful
lemmas.

Lemma 1. Let −∞ ≤ a < b ≤ +∞ and f : (a, b) → R a differentiable function. If there are the
limits f (a+) and f (b−) , with f (a+) = f (b−) , then there exists a point c ∈ (a, b) such that
f ′ (c) = 0.

Proof. If we assume that f ′ (x) ̸= 0, for any x ∈ (a, b) then f ′ is positive or negative.
This means that f is strictly monotone. As consequence we obtain f (a+) ̸= f (b−) that
contradicts the hypothesis. □

The next two lemmas are useful to explain that the function from Theorems 4-6 are
correct defined. We will present the proof only for the first, the second being similarly.

Lemma 2. Assume −∞; a < b ≤ +∞ and n a positive integer. Let h : (a, b) → R a (n+ 1)-
times differentiable function on (a, b) such that h(n+1) (x) ̸= 0, for any x ∈ (a, b) . If there exist
finite limits h(k) (a+) , for any k ∈ {0, 1, 2, ..., n} , then

h (x)−
n∑

k=0

h(k) (a+)

k!
(x− a)

k ̸= 0,

for any x ∈ (a, b) .

Proof. Denote

H (x) = h (x)−
n∑

k=0

h(k) (a+)

k!
(x− a)

k
.

It is clear that H is (n+ 1)-times differentiable on (a, b) and H(k) (a+) = 0, for any k ∈
{0, 1, 2, ..., n} .

We assume by contradiction that there exists c0 ∈ (a, b) such that H (c0) = 0. Hence
H (a+) = 0, we can apply the previous lemma and we find c1 ∈ (a, c0) such that H ′ (c1) =
0. In the same mode, we find c2 ∈ (a, c1) such that H ′′ (c2) = 0. We repeat this reasoning
and obtain a < cn < cn−1 < ... < c2 < c1 and H(k) (ck) = 0, for any k ∈ {1, 2, ..., n} . The
previous lemma give us another point cn+1 ∈ (a, cn) such that H(n+1) (cn+1) = 0. Hence
H(n+1) (cn+1) = h(n+1) (cn+1) then h(n+1) (cn+1) = 0 that it contradicts the hypothesis
and concludes the lemma proof. □
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Lemma 3. Let −∞ ≤ a < b < +∞ and n a positive integer. Let h : (a, b) → R a (n+ 1)-
times differentiable function on (a, b) such that h(n+1) (x) ̸= 0, for any x ∈ (a, b) . If there exist
h(k) (b−) exist and are finite, for any k ∈ {0, 1, 2, ..., n} , then

h (x)−
n∑

k=0

h(k) (b−)

k!
(x− b)

k ̸= 0,

for any x ∈ (a, b) .

Now we are in position to present the main results of this paper. Hence the results from
Theorem 4 and 5 are similar, we will present the proof only for the first theorem.

Theorem 4. Let −∞ < a < b ≤ +∞ and n a positive integer. Let f, g : (a, b) → R two
(n+ 1)-times differentiable functions on (a, b) such that g(n+1) (x) ̸= 0, for any x ∈ (a, b) , and
f(n+1)

g(n+1) is increasing (decreasing) on (a, b) . If there exist finite limits f (k) (a+) and g(k) (a+) , for
any k ∈ {0, 1, 2, ..., n} , then the function

h : (a, b) → R, h (x) =
f (x)−

∑n
k=0

f(k)(a+)
k! (x− a)

k

g (x)−
∑n

k=0
g(k)(a+)

k! (x− a)
k

is increasing (decreasing) on (a, b) .

Proof. For any s ∈ {0, 1, 2, ..., n, n+ 1} and x ∈ (a, b) denote

Fs (x) = f (s) (x)−
n−s∑
k=0

f (k+s) (a+)

k!
(x− a)

k+s
.

In particular F0 (x) = f (x)−
∑n

k=0
f(k)(a+)

k! (x− a)
k and Fn+1 (x) = f (n+1) (x) . Moreover,

we have Fs+1 (x) = F ′
s (x) and Fs (a+) = 0, for any s ∈ {0, 1, 2, ..., n} .

Also, for any s ∈ {0, 1, 2, ..., n, n+ 1} and x ∈ (a, b) denote

Gs (x) = g(s) (x)−
n−s∑
k=0

g(k+s) (a+)

k!
(x− a)

k+s
.

From previous lemma we obtain that Gs (x) ̸= 0, for any s ∈ {0, 1, 2...., n, n+ 1} and
x ∈ (a, b) . This means that the ratio Fs(x)

Gs(x)
is correct defined for any s ∈ {0, 1, 2...., n, n+ 1}

and x ∈ (a, b) .

Let s ∈ {0, 1, 2, ..., n} . If Fs+1

Gs+1
is increasing (decreasing) then F

′
s

G′
s

is is increasing (de-

creasing) and Theorem 1 give as that Fs

Gs
is increasing (decreasing). From the hypothesis

we obtain that f(n+1)

g(n+1) = Fn+1

Gn+1
is increasing (decreasing). We repeat the previous reasoning

and we find that Fn

Gn
, Fn−1

Gn−1
, ..., F1

G1
are simultaneous increasing (decreasing). Finally, F0

G0
is

increasing (decreasing) and the proof is complete. □

Theorem 5. Let −∞ ≤ a < b < +∞ and n a positive integer. Let f, g : (a, b) → R two
(n+ 1)-times differentiable functions on (a, b) such that g(n+1) (x) ̸= 0, for any x ∈ (a, b) , and
f(n+1)

g(n+1) is increasing (decreasing) on (a, b) . If there exist finite limits f (k) (b−) and g(k) (b−), for
any k ∈ {0, 1, 2, ..., n} , then the function

h : (a, b) → R, h (x) =
f (x)−

∑n
k=0

f(k)(b−)
k! (x− b)

k

g (x)−
∑n

k=0
g(k)(−b)

k! (x− b)
k
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is increasing (decreasing) on (a, b) .

As an application of the previous results we obtain that the function

h : (0,∞) → R, h (x) =
ex − 1− x− x

2

x3

is increasing. Indeed, if we denote f (x) = ex − 1 − x − x2

2 and g (x) = x3 then f, g is

satisfying the hypothesis of Theorem 4. More, we have f(3)(x)
g3(x) = 1

6e
x, also an increasing

function. Hence

h (x) =
f (x)−

∑2
k=0

f(k)(0+)
k! · xk

g (x)−
∑2

k=0
g(k)(0+)

k! · xk
,

we obtain that h is increasing.
The following result represents the generalization of Theorem 2.

Theorem 6. Let −∞ ≤ a < b ≤ +∞ and n a positive integer. Let f, g : (a, b) → R two
(n+ 1)-times differentiable functions on (a, b) with g(n+1) (x) ̸= 0, for any x ∈ (a, b) , such that
f(n+1)

g(n+1) is increasing (decreasing) on (a, b) . Then, for any c ∈ (a, b) , the function

h : (a, b) → R, h (x) =


f(x)−

∑n
k=0

f(k)(c)
k! (x−c)k

g(x)−
∑n

k=0
g(k)(c)

k! (x−c)k
, if x ̸= c

f(n+1)(c)
g(n+1)(c)

, if x = c

is increasing (decreasing) on (a, b) .

Proof. We observe that the function h is continuous in c, so continuous on (a, b) . Indeed,
applying successively the l’Hôpital rule, we obtain

lim
x→c

h (x) = lim
x→c

f (n) (x)− f (n) (c)

g(n) (x)− g(n) (c)
= lim

x→c

f (n) (x)− f (n) (c)

x− c
· x− c

g(n) (x)− g(n) (c)

=
f (n+1) (c)

g(n+1) (c)
= h (c) .

We assume that f(n+1)

g(n+1) is increasing. Due to Theorem 3, the function h is increasing on
(a, c) . Then, for any x ∈ (a, c) , we have h (x) ≤ limx↗c h (x) = h (c) and h is increasing on
(a, c] . Similarly, we obtain that h is increasing on [c, b) .Hence h is increasing on (a, b) . □

As a consequence of the previous result we obtain the monotonicity of the function

h : (−1,∞) → R, h (x) =

 ex−1−
∑n

k=1
xk

k!

ln(x+1)−
∑n

k=1
(−1)k−1xk

k!

, if x ̸= 0

0, if x = 0
,

where n ≥ 2 is a positive integer. If we denote f (x) = ex − 1 −
∑n

k=1
xk

k! and g (x) =

ln (x+ 1)−
∑n

k=1
(−1)k−1xk

k! , we have

f (n+1)

g(n+1)
(x) =

ex (x+ 1)
n+1

(−1)
n · n!

,

for any x ∈ (−1,∞) . This means that f(n+1)

g(n+1) is increasing if n is even and decreasing if n
is odd. Now, the monotonicity of h follows.

The last result of this paper represents a generalization of Theorem 2 from [6].
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Corollary 1. Assume −∞ < a < b < +∞ and n a positive integer. Let f, g : (a, b) → R two
(n+ 1)-times differentiable functions on (a, b) such that g(n+1) (x) ̸= 0, for any x ∈ (a, b) . We
assume that f(n+1)

g(n+1) is increasing on (a, b) and there are the finite limits f(a+), f(b−), g(a+) and
g(b−).

a) If there are the finite limits f (k) (b−) and g(k) (b−) , finite for any k ∈ {1, 2, ..., n} , then

(2.1)
f (a+)−

∑n
k=0

f(k)(b−)
k! (a− b)

k

g (a+)−
∑n

k=0
g(k)(b−)

k! (a− b)
k
≤

f (x)−
∑n

k=0
f(k)(b−)

k! (x− b)
k

g (x)−
∑n

k=0
g(k)(b−)

k! (x− b)
k
≤ f (n+1)

g(n+1)
(b−) ,

for any x ∈ (a, b) .

b) If there are the finite limits f (k) (a+) and g(k) (a+) , for any k ∈ {1, 2, ..., n} , then

(2.2)
f (n+1)

g(n+1)
(a+) ≤

f (x)−
∑n

k=0
f(k)(a+)

k! (x− a)
k

g (x)−
∑n

k=0
g(k)(a+)

k! (x− a)
k
≤

f (b−)−
∑n

k=0
f(k)(a+)

k! (b− a)
k

g (b−)−
∑n

k=0
g(k)(a+)

k! (b− a)
k
,

for any x ∈ (a, b) .

Proof. For the assertion a) we denote h (x) = f(x)−
∑n

k=0
f(k)(a+)

k! (x−b)k

g(x)−
∑n

k=0
g(k)(a+)

k! (x−b)k
. From the hypothesis

and Theorem 5 we obtain that h is increasing. Now, the conclusion follows due to the
inequality

lim
x↘a

h (x) ≤ h (x) ≤ lim
x↗b

h (x) .

A similar argument for the function u (x) =
f(x)−

∑n
k=0

f(k)(a+)
k! (x−a)k

g(x)−
∑n

k=0
g(k)(a+)

k! (x−a)k
concludes the asser-

tion b) too. □

It clear that the inequalities from Corollary 1 will be reversed if the ratio f(n+1)

g(n+1) is de-
creasing.

Also, if we choose g (x) = (b− x)
n+1

, we obtain that g(n+1) (x) = (−1)
n+1 · (n+ 1)!.

The function f(n+1)

g(n+1) = (−1)
n+1 · f(n+1)

(n+1)! is increasing, so (−1)
n+1 · f (n+1) is increasing and

we obtain the hypothesis of the first part of Theorem 2 from [6]. Then (2.1) becomes

f (a+)−
∑n

k=0
f(k)(b−)

k! (a− b)
k

(b− a)
n+1 ≤

f (x)−
∑n

k=0
f(k)(b−)

k! (x− b)
k

(b− x)
n+1 ≤ f (n+1) (b−)

(−1)
n+1

(n+ 1)!
,

also

(b− x)
n+1

(b− a)
n+1

(
f (a+)−

n∑
k=0

f (k) (b−)

k!
(a− b)

k

)
≤ f (x)−

n∑
k=0

f (k) (b−)

k!
(x− b)

k

≤ (−1)
n+1

f (n+1) (b−)

(n+ 1)!
(b− x)

n+1
,

equivalent with
n∑

k=0

f (k) (b−)

k!
(x− b)

k
+

(b− x)
n+1

(b− a)
n+1

(
f (a+)−

n∑
k=0

f (k) (b−)

k!
(a− b)

k

)
≤

≤ f (x) ≤ −
n+1∑
k=0

f (k) (b−)

k!
(x− b)

k
.
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and we obtain the first inequality from mention theorem. Some similar argument, but
choosing g (x) = (x− a)

n+1
, led us to the second inequality of the same theorem and

concludes our paper.
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