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Some considerations about ’'Hépital-type rules for the
monotonicity

DAN STEFAN MARINESCU and MIHAT MONEA

ABSTRACT. The aim of this note is to present some results associated to the 'Hopital-type rules for the

monotonicity (LMR). We will prove the monotonicity of the ratio %, were c is an arbitrary point from
the interval (a, b). Also, we extend LMR to the ratio of two higher-order differentiable functions. We complete

with some applications of our results.

1. INTRODUCTION

In [1], Anderson et al. proposed a rule by 'Hopital type for the monotonicity of the ratio
of two differentiable functions. Later, Pinelis [3] developed this topic and proposed the
following result:

Theorem 1. Suppose —o0o < a < b < oo and let f, g : (a,b) — R be two differentiable functions
such that g’ # 0 and § is increasing (decreasing) on the interval (a, b).
a) Assume that there are the finite limits f(a+) and g(a+). Then the function
h:(a,b) = R, h(zx)= f) = Jlat)
g9(x) —g(at)
is increasing (decreasing) on the interval (a,b).
b) Assume that there are the finite limits f(b—) and g(b—). Then the function

h:(a,b) > R h(z) = J;Ez)_g((é’_))

is increasing (decreasing) on the interval (a, b).

For example, let us consider the functions f, g : (1,00) — R, defined by f(z) = e” —e,

g(xz) = Inz. The function g—: 1 (1,00) = R, J;:Ef; = ze”, is increasing on (1, c0). Then the
function
fla) = fO4) _e"—e

h:(1l,00) = R,h(z) = g(x) — g(1+) Y

)

is also increasing on (1, c0).

Theorem 1 is called 1'Hopital’s rule for the monotonicity (LMR). The readers can find
more papers dedicated to this topic as [4], [5] or [6], where many applications of LMR are
proposed. Also, in [2], we find a counterexample for the reverse of LMR, that is a case
where the function %

the mentioned paper).

is monotone but g—: is not monotone (see Example 13 from
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The aim of this note is to present some results associated to LMR. We extend Theorem 1
and we will prove the monotonicity of the ratio %, for every point c of the interval

(a,b) . We will show and prove some versions of LMR involving high order differentiable
functions. We also include some applications of our results.

We mention that in this paper, a non-decreasing function will be called an increasing
function, and a non-increasing function will be called a decreasing function.

2. THE MAIN RESULTS
Firstly, we present a version of LMR for the points of an open interval.
Theorem 2. Let —oco < a < b < oo and f,g: (a,b) = R two differentiable functions such that
g () # 0, forany x € (a,b) , and 5 is increasing (decreasing) on (a, b) . Then the function

f(@)—f(c) :
a(z)—ale)? if x 75 C
h: ((l, b) — R, h (x) = { g]gff);g(c)

9’52)’ ifr=c
is increasing (decreasing) on (a,b), forany c € (a,b) .
Proof. We have lim,_,.h(x) = lim,_,. f(’“ﬁif(c) WOEIONS % = h(c), so h is con-

tinuous in ¢ and also h is continuous on (a,b). We assume that ]gc—: is increasing. Due
to Theorem 1, the function & is increasing on (a,c). Then, for any = € (a,c), we have
h(z) < limg ».h(xz) = h(c) and h is increasing on (a, ¢] . Similarly, we obtain that A is
increasing on [c, b). Now we conclude that A is increasing on (a, b). O

As a simple application of the previous result we obtain that the function

_ [ e=e ifr#£l
h.(O,oo)—)]R,h(:z:)—{ o1

€,

is increasing on (0, c0) .

An interesting example is related to the weighted power mean. Let n be a positive integer
and a1, ag, ..., an, € (0,00) . Let p1,p2, ..., pn, > 0such that p; +pa+...+p, = 1. We consider
the function M : R — R defined by

p1 D2 DPn 3 —
ai'ay’...abr ifx=0

L,
M (z) = { (prai + p2ag + ... + pnay) ™, iz #0
To evaluate the the monotonicity of M we consider the function In M. Denote
f(z) =In(piaf + p2a3 + ... + ppay,) and g (x) = .

We have

f(@)
1mm@:{g@7 z70

ZZ:1 prlnay, =0
Note that the function In M is continuous on R. Let us define the function

/ n zq
)= L Zam il g

g'(x) 2 k=1 Pk,

We have

2
o (z) = ZZ:1 Pray, In® 4y, - 22:1 PRy, — (ZZ:l prag Inay)
= > .
(ZZ:I Prag)
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From the Cauchy-Schwarz inequality, we obtain 7/(z) > 0, for all € R. This means that
r =24 isan increasing function on R. Theorem 2 ensures the increasing monotony on R
of the function
f(z)=f(0)
In M(z) = { ?,(fo))—g(o)’ z#0
g’(0)’
Therefore, the weighted power mean M is increasing on R.
It is well known that the classic 'Ho6pital’s rule can be applies successively. For exam-
ple, we have

z=0

I x3—3x+2_, 3962—3_. 6x 1
e ol 4z +3  eoidad — 4 as11222 2
Then we raise the question if a similar situation holds in a case of monotonicity. The
answer is positive as we will prove in Theorem 3. We will continue with some useful

lemmas.

Lemma 1. Let —o0o < a < b < +ooand f : (a,b) — R a differentiable function. If there are the
limits f (a+) and f (b—), with f (a+) = f (b—), then there exists a point ¢ € (a,b) such that
fe)=0

Proof. If we assume that f’ (z) # 0, for any « € (a,b) then f’ is positive or negative.
This means that f is strictly monotone. As consequence we obtain f (a+) # f (b—) that
contradicts the hypothesis. O

The next two lemmas are useful to explain that the function from Theorems 4-6 are
correct defined. We will present the proof only for the first, the second being similarly.

Lemma 2. Assume —oo;a < b < +o00 and n a positive integer. Let h : (a,b) — Ra (n+ 1)-
times differentiable function on (a,b) such that h"+1) (2) # 0, for any x € (a,b) . If there exist
finite limits h\®) (a+) , for any k € {0,1,2,...,n} , then

n

*® (g
ne) - S ot s,

k!
k=0
forany x € (a,b).
Proof. Denote
H (z) :h(x)—z#(x—a)k.
k=0

It is clear that H is (n + 1)-times differentiable on (a,b) and H*) (a+) = 0, for any k €
{0,1,2,....,n}.

We assume by contradiction that there exists ¢y € (a,b) such that H (¢p) = 0. Hence
H (a+) = 0, we can apply the previous lemma and we find ¢; € (a, ¢o) such that H' (¢1) =
0. In the same mode, we find ¢z € (a, ¢1) such that H” (c3) = 0. We repeat this reasoning
and obtain a < ¢, < ¢p_1 < ... < ¢ < ¢; and H® (¢;,) = 0, for any k € {1,2,...,n}. The
previous lemma give us another point ¢,,+1 € (a, ¢,) such that (n+1) (¢nt1) = 0. Hence
H™ Y (¢,01) = Y (¢,41) then A"+ (¢, 1) = 0 that it contradicts the hypothesis
and concludes the lemma proof. O
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Lemma 3. Let —oco < a < b < +oo and n a positive integer. Let h : (a,b) — Ra (n+ 1)-
times differentiable function on (a,b) such that h"*1) (z) # 0, for any x € (a,b) . If there exist
h*) (b—) exist and are finite, for any k € {0,1,2,...,n}, then

" Rk (p—
nw) -3 s

— kK
forany x € (a,b).

Now we are in position to present the main results of this paper. Hence the results from
Theorem 4 and 5 are similar, we will present the proof only for the first theorem.

Theorem 4. Let —co < a < b < 400 and n a positive integer. Let f,g : (a,b) — R two
(n + 1)-times differentiable functions on (a,b) such that gV () # 0, for any = € (a,b) , and

(n+

f(n“)) is increasing (decreasing) on (a,b) . If there exist finite limits f*) (a+) and g**) (a+) , for
any k € {0,1,2,...,n}, then the function

fx) =2, f(k)(aJr) (x — a)k
g(x)— Zk =0 g(k) ’a+) (x — a)k

h:(a,b) >R h(z)=

is increasing (decreasing) on (a,b) .
Proof. Forany s € {0,1,2,...,n,n+ 1} and z € (a,b) denote

(kJrs

Fi@) =7 (@ Z . (o= )

In particular Fy (z) = f (z) =Y}, " )k('a+) (z —a)* and F, 1 (z) = f(D (z) . Moreover,
we have F,1; (z) = F! (z) and F; (a+) =0, forany s € {0,1,2,...,n}.
Also, for any s € {O, 1,2,..,n,n+ 1} and z € (a,b) denote

§2 ) ()

x (z — a)k+s )

k=0

From previous lemma we obtain that G5 (z) # 0, for any s € {0,1,2....,n,n+ 1} and
€ (a,b) . This means that the ratio g((i)) is correct defined forany s € {0,1,2....,n,n + 1}

and x € (a,b).

Let s € {0,1,2,...,n}. If Fsill is 1ncreasmg (decreasing) then &is is increasing (de-

creasing) and Theorem 1 give as that £= is increasing (decreasmg) From the hypothesis

( n+1) _ Fny
we obtain that £ Sy = G:+1 is 1ncreasmg (decreasing). We repeat the previous reasomng
. F, Fn_1 F
and we find that &=, 7z*=, ..., G+ are simultaneous increasing (decreasing). Finally, £2 is
increasing (decreasing) and the proof is complete. 'O

Theorem 5. Let —co < a < b < 400 and n a positive integer. Let f,g : (a,b) — R two
(n + 1)-times differentiable functions on (a,b) such that g™+Y () # 0, for any = € (a,b), and
% is increasing (decreasing) on (a,b) . If there exist finite limits f*) (b—) and g'¥) (b—), for

any k € {0,1,2,...,n}, then the function

fle) = o L) (o)
0(0) — Sy C ()

h:(a,b) >R h(x)=
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is increasing (decreasing) on (a,b) .

As an application of the previous results we obtain that the function

h:(0,00) >R A(x) =~ *"2

3
is increasing. Indeed, if we denote f (z) = e* — 1 — oz — —2 and g (r) = 2% then f, g is

o . .
satisfying the hypothesis of Theorem 4. More, we have £ (( )) = 1e, also an increasing
function. Hence

£ 0+
f(z) - Zk 0 l i L0

"= g(x) - Zk 0 (k)(OH e

)

we obtain that / is increasing.
The following result represents the generalization of Theorem 2.

Theorem 6. Let —co < a < b < 400 and n a positive integer. Let f,g : (a,b) — R two
(n + 1)-times differentiable functions on (a,b) with "+ (2) # 0, for any = € (a,b) , such that

(n+1)

o Is increasing (decreasing) on (a, b) . Then, for any c € (a,b) , the function

< 7R (o) p_c)F
f(ﬂ?) Zk:() (k-k)! ( )k lfﬂ:#c
h:(a,b) = R h(x)=1{ g@@)-r 25 @—c)*
£ (e)

ifr=c
is increasing (decreasing) on (a,b) .

Proof. We observe that the function 4 is continuous in ¢, so continuous on (a, b) . Indeed,
applying successively the 1'Hopital rule, we obtain

: f (@) = f () SO (@) = F (o) r—c
lmh(@) =lm o =g z—c "9 (@) — g™ (0)
Fo (o)

g

(1) . . . L .
We assume that g(%; is increasing. Due to Theorem 3, the function / is increasing on
(a,c) . Then, for any = € (a,c),wehave h (z) < lim, . h () = h(c) and h is increasing on
(a, ] . Similarly, we obtain that h is increasing on [¢, b) .Hence h is increasing on (a,b). O

As a consequence of the previous result we obtain the monotonicity of the function

k
e -1-yp = :
e, iz A0

h:(-1,00) >R, h(z) = m@+n-r_, 8T ,
0, ifz=0
where n > 2 is a positive integer. If we denote f (z) = e* —1— >} _, “"k—): and g (z) =
k—1_k
In(z+1)—Y,_, Gy = ——, we have
frtD et (x4 N
gt T m

for any = € (—1,00) . This means that < ( +1)
is odd. Now, the monotonicity of h follows.
The last result of this paper represents a generalization of Theorem 2 from [6].

is increasing if n is even and decreasing if n
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Corollary 1. Assume —oco < a < b < 400 and n a positive integer. Let f,g : (a,b) — R two
(n + 1)-times differentiable functions on (a,b) such that g+ (x) # 0, for any = € (a,b) . We
assume that % is increasing on (a, b) and there are the finite limits f(a+), f(b—), g(a+) and
9(b=)-
a) If there are the finite limits ) (b—) and g*) (b—) , finite for any k € {1,2,...,n} , then
n (k) k k) k
flat) =S TP =) 1) - R @)t oy
n g®(b-) k < g (b—) v S (nt1) (b-),
g (a—l—) - Zk:o T (a - b) ( ) Zk 0 A ( b) 9
forany x € (a,b).
b) If there are the finite limits f*) (a+) and g**) (a-+) , forany k € {1,2,...,n} , then
n 8 n 8
22 10y < L@ T T o) () - S T (b a)”
: ntl = n g™ (a k= w5 a k
gy 00~ Ty T (o aF = g00) - sty B

@2.1)

forany x € (a,b).

F@) =X L )

(Jc) Z”—o g(k)k(zﬂr)( )k
and Theorem 5 we obtain that & is increasing. Now, the conclusion follows due to the
inequality

Proof. For the assertion a) we denote h (z) = . From the hypothesis

lim 1 (¢) < h (@) < liny 1 (0).

@) =T L (@0t
9(@) =g T (2 —a)t
tion b) too. ]

A similar argument for the function v (z) = concludes the asser-

. s . . R ICE I
It clear that the inequalities from Corollary 1 will be reversed if the ratio g(nij:) is de-
creasing.

Also, if we choose g (z) = (b—z)"*", we obtain that g**1 (z) = (=1)"*" . (n+ 1)L.

. et 1 pern . 1
The function % = ()"t {n+1)! is increasing, so (—1)""

we obtain the hypothesis of the first part of Theorem 2 from [6]. Then (2.1) becomes
no 0 (e £
flat) =3 T =) f @) - SR TP @) e ()

- f(*+1) is increasing and

(=)™ - b—a)" T D" Y
also
— )"t n k) (p—
M(ﬂaﬂ-zf e ) Zf @ - ot
k=0 :
(_l)n-H f(n+1) (b—) —
= CESY] -
equivalent with
=~ ) (b — )"t (k) (p
L <f(a+)—sz(|b)(a—b)k> <
k=0 : (b - a) 5—0 :
n+1 (k) (1,_
<fl@)<-— ! (b)(x—b)k.

- k!
k=0
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and we obtain the first inequality from mention theorem. Some similar argument, but
choosing g (z) = (z —a)"*", led us to the second inequality of the same theorem and
concludes our paper.
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