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On the derived numbers of a real function

DAN ŞTEFAN MARINESCU and EUGEN PĂLTĂNEA

ABSTRACT. The derived numbers of a real function at a point of its domain provide useful information about
the variation of the function around that point. In this note, we introduce the concept of one-sided derived
numbers and we obtain specific characterizations of some functional properties. We exemplify the usefulness of
our results through some interesting consequences and applications.

1. INTRODUCTION

The derived numbers of a real function are closely related to the notion of differentia-
bility. The definition of these numbers can be found, for example, in Natanson [3]. We in-
troduce below the concept of one-sided derived number. In what follows, R = R∪{±∞},
N = {0, 1, 2, . . .} and N∗ = {1, 2, . . .}.

Definition 1.1. Let I be a real open interval. Assume f : I → R.

(i) The number λ ∈ R is said to be a derived number from the right of f at the point
x0 ∈ I if there is a sequence {hn}n≥0, with hn > 0, for all n ∈ N, such that

lim
n→∞

hn = 0 and lim
n→∞

f(x0 + hn)− f(x0)

hn
= λ.

(ii) The number λ ∈ R is said to be a derived number from the left of f at the point
x0 ∈ I if there is a sequence {hn}n≥0, with hn < 0, for all n ∈ N, such that

lim
n→∞

hn = 0 and lim
n→∞

f(x0 + hn)− f(x0)

hn
= λ.

For f : I → R and x0 ∈ I , let us denote:

D+f(x0) = {λ ∈ R : λ is a derived number from the right of f at the point x0}

and

D−f(x0) = {λ ∈ R : λ is a derived number from the left of f at the point x0}.

The set D+f(x0) is not empty. Indeed, assume a sequence {hn}n≥0, with hn > 0, for all

n ∈ N, such that lim
n→∞

hn = 0. The sequence rn =
f(x0 + hn)− f(x0)

hn
, n ∈ N, has at least

one limit point λ ∈ R. We deduce λ ∈ D+f(x0). Similarly, we get D−f(x0) ̸= ∅.
Clearly, if f is differentiable at x0 ∈ I , then D+f(x0) = D−f(x0) = {f ′(x0)}.
If f is convex on I , then D+f(x0) = {f ′

+(x0)}, where

f ′
+(x0) = lim

x→x+
0

f(x)− f(x0)

x− x0
= inf

x∈I, x>x0

f(x)− f(x0)

x− x0
∈ R
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and D−f(x0) = {f ′
−(x0)}, where

f ′
−(x0) = lim

x→x−
0

f(x)− f(x0)

x− x0
= sup

x∈I, x<x0

f(x)− f(x0)

x− x0
∈ R.

We have f ′
−(x0) ≤ f ′

+(x0), for all x0 ∈ I (see, for example, [4] for details).
If f is monotonically increasing on I , then D+f(x0) and D−f(x0) are subsets of the set

[0,∞] (see [3]).
It should be noted that the problem of generalized antiderivatives of functions is a topic

related to the derived numbers. Among relevant classical results from the literature, we
mention the following theorem.

Theorem 1.1. ([2]) For a function f : R → R and an arbitrary sequence {hn}n≥0 of non-zero

numbers converging to 0, there exists a function F such that lim
n→∞

F (x+ hn)− F (x)

hn
= f(x),

for all x ∈ R.

2. MAIN RESULTS

We previously mentioned that the one-sided derivative numbers of a monotonically
increasing function are non-negative. The converse implication is not true. For example,
for the fractional part function f : R → [0, 1), we have D+f(x) = {1}, ∀x ∈ R, but f is
not a monotonically increasing function. However, under the assumption of continuity,
the following property holds.

Proposition 2.1. If f : I → R is a continuous function on the open interval I and D+f(x) ∩
[0,∞] ̸= ∅, for any x ∈ I , then f is monotonically increasing on I .

Proof. Assume x, y ∈ I , with x < y. For an arbitrary number ε > 0, let us consider the set
M(ε) = {z ∈ [x, y] : f(z) − f(x) ≥ −ε(z − x)}. We have x ∈ M(ε) ⊂ [x, y]. Then there is
s = supM(ε) ∈ [x, y] ⊂ I . From the continuity of f , we obtain s ∈ M(ε), that is

(2.1) f(s)− f(x) ≥ −ε(s− x).

Assume s < y. The hypothesis ensures the existence of a number λ ∈ D+f(s) ∩ [0,∞],
that is there exists a sequence {hn}n≥0, with hn > 0, for all n ∈ N, such that hn →

0 and lim
n→∞

f(s+ hn)− f(s)

hn
= λ. So, we can find p ∈ N such that s + hp ≤ y and

f(s+ hp)− f(s)

hp
≥ −ε. From (2.1) we get

f(s+ hp)− f(x) = [f(s+ hp)− f(s)] + [f(s)− f(x)] ≥ −εhp − ε(s− x) = −ε[(s+ hp)− x].

As a consequence, s+hp ∈ M(ε), with s < s+hp ≤ y, in contradiction with the definition
of s. Thus, y = s ∈ M(ε) and have f(y) − f(x) ≥ −ε(y − x). Since ε > 0 is arbitrary, we
obtain f(y)− f(x) ≥ 0.

In conclusion, f is a monotonically increasing function on I . □

Remark 2.1. Consider the famous everywhere continuous, nowhere monotonic, Takagi-
Van der Waerden function (see, for example, [1])

w(x) =

∞∑
n=0

1

2n
d (2nx) , x ∈ R,

where d(x) is the distance of x to the nearest integer. It follows from Proposition 2.1 that
in any open interval (a, b) ⊂ R there is a point c such that D+(w)(c) ⊂ (−∞, 0), that is the
set {x ∈ R : D+(w)(x) ⊂ (−∞, 0)} is dense in R.
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Also remark that the assumption of continuity cannot be eliminated in the above propo-
sition. As an elementary counterexample, let us consider the discontinuous at 0 function

f(x) =

{
x, x < 0
x− 1, x ≥ 1

. We have D+(f)(x) = {1}, for all x ∈ R, but the function f is

not increasing on R.

The following consequences refer to a continuous function f : I → R, where I is an
open real interval.

Corollary 2.1. If D+f(x) ∩ (0,∞] ̸= ∅, for all x ∈ I , then f is strictly increasing on I .

Proof. From Proposition 2.1, f is monotonically increasing on I . Assume that there are
x, y ∈ I, with x < y and f(x) = f(y). Then f is constant on [x, y]. Hence D+f(z) = {0},
for all z ∈ [x, y), in contradiction with the assumption. As follows f is strictly increasing
on the interval I . □

Corollary 2.2.
(i) If D+f(x) ∩ [−∞, 0] ̸= ∅, ∀x ∈ I , then f is monotonically decreasing on I .

(ii) If D+f(x) ∩ [−∞, 0) ̸= ∅, ∀x ∈ I , then f is strictly decreasing on I .

Proof. We apply Proposition 2.1 and Corollary 2.1 for the function −f . □

Corollary 2.3. If 0 ∈ D+f(x), ∀x ∈ I , then f is constant on I .

Proof. From Proposition 2.1 and Corollary 2.2 (i) we deduce that f is is simultaneous
monotonically increasing and decreasing. Therefore, f is constant. □

A derivability criterion is formulated below in terms of one-sided from the right de-
rived numbers.

Proposition 2.2. Let f : I → R be a continuous function on the open real interval I . Assume
that there is a differentiable function g : I → R, such that g′(x) ∈ D+f(x), for all x ∈ I . Then f
is differentiable on I .

Proof. Consider the continuous function h = g − f : I → R. From the assumption, 0 ∈
D+h(x), ∀x ∈ I . Hence h is constant (Corollary 2.3). Therefore f = g − h is differentiable
on I . □

Remark 2.2. The above result extends a contest problem recently proposed by Săvescu
[7], pp. 43-44. In this problem it is assumed that there is a strictly positive sequence

{hn}n≥0 converging to 0, such that g′(x) = lim
n→∞

f(x+ hn)− f(x)

hn
, for all x ∈ I . Thus, the

function f is a generalized antiderivative of g′. Note that, Theorem 1.1 ensures the exis-
tence of generalized antiderivatives of an arbitrary function defined on an open interval,
given a strictly positive sequence which converges to 0. Such a continuous generalized
antiderivative of the derivative of a function is therefore differentiable.

In what follows, we characterize the Lipschitz property in our context.

Proposition 2.3. Let f : I → R be a function defined on the real interval I . Assume L > 0. The
following properties are equivalent:

(i) f is a L-Lipschitz function on I .
(ii) D+f(x) ⊂ [−L,L], for all x ∈ I .

Proof. Let us define g, h : I → R, by g(x) = Lx − f(x) and h(x) = Lx + f(x), for all
x ∈ I . We easily notice that (i) holds if and only if g and h are monotonically increasing
functions, hence D+g(x), D+h(x) ⊂ [0,∞], ∀x ∈ I . But the last conditions are equivalent
with D+f(x) ⊂ [−∞, L] ∩ [−L,∞] = [−L,L]. Thus (i) and (ii) are equivalent. □
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Corollary 2.4. Let f be a real convex function on an open interval I . Then f is a Lipschitz
function on any compact interval [a, b] ⊂ I .

Proof. The convex function f : I → R is continuous on the open interval I . Assume
[a, b] ⊂ I , with a < b. Let us denote L = max{|f ′

+(a)|, |f ′
+(b)|} ∈ [0,∞). We have

−L ≤ f ′
+(a) ≤ f ′

+(x) ≤ f ′
+(b) ≤ L, for all x ∈ [a, b].

Thus, D+f(x) = {f ′
+(x)} ⊂ [−L,L], for all x ∈ [a, b]. From Proposition 2.3, we get the

conclusion. □

Corollary 2.5. Let f be a real differentiable function on an open interval I . The following state-
ments are equivalent:

(i) f is convex on I ;
(ii) f ′ is continuous on I and D+(f

′)(x) ∩ [0,∞) ̸= ∅, for all x ∈ I .

Proof. (i)⇒(ii). Since the differentiable function f is convex on I , its derivative f ′ is mono-
tonically increasing on I . Then D+(f

′)(x) ∩ [0,∞) ̸= ∅, for all x ∈ I . The continuity of f ′

results from the monotony and Darboux’s theorem.
(ii)⇒(i). From Proposition 2.1 and the assumption (ii), we conclude that f ′ is monotoni-
cally increasing on I . Hence f is convex on I . □

Remark 2.3. The function f : R → R, defined by f(x) =

∫ x

0

w(t) dt, for x ∈ R, has a

continuous derivative, but it is nowhere convex (see Remark 2.1). On the other hand, if f ′

has discontinuities on I , then f is not convex on I and {x ∈ I : D+(f)(x) ⊂ (−∞, 0)} ≠ ∅.

The applications below show the usefulness of our results in providing natural solu-
tions to some interesting contest problems.

Example 2.1. (Andrica and Piticari [5], pp. 14, 72)
Let f : R → R be a monotonically increasing function on R. Assume that the function

F : R → R, F (x) =

∫ x

0

f(t) dt, x ∈ R, is differentiable. Then f is continuous.

Proof. Since f is monotonically increasing, F is convex. Indeed, for x1, x2, x3 ∈ R, such
that x1 < x2 < x3, we have:

F (x2)− F (x1)

x2 − x1
=

∫ x2

x1
f(t) dt

x2 − x1
≤ f(x2) ≤

∫ x3

x2
f(t) dt

x3 − x2
=

F (x3)− F (x2)

x3 − x2
.

Then F ′ is continuous (Corollary 2.5). Clearly, F ′(x) = f(x) at any point x of continuity of
f . Taking into account that f has finite lateral limits that frame its value at any point x ∈ R,
and the set of continuity points of f is dense in R, we deduce that F ′(x) = f(x), ∀x ∈ R.
Thus, f is continuous on R. □

Example 2.2. (Bălună [6], pp. 25-26)
Let f : R → R be a non-decreasing function and F : R → R a function having right and
left finite derivatives at any point in R and F (0) = 0. Suppose f(x0 − 0) ≤ F ′

−(x0) and

f(x0 + 0) ≥ F ′
+(x0), for any x0 ∈ R. Then F (x) =

∫ x

0

f(t) dt, x ∈ R.

Proof. Define the functions G,H : R → R by G(x) =
∫ x

0
f(t) dt and H(x) = G(x) −

F (x), for all x ∈ R. The function F , having lateral finite derivatives at any point, is
continuous on R. Also, the function G is continuous on R. Hence H is continuous on R.
We have D+(H)(x0) = {f(x0+0)−F ′

+(x0)} ⊂ [0,∞). Then H is monotonically increasing
on R (Proposition 2.1). Similarly, from Corollary 2.2, it follows that H is monotonically
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decreasing on R. Therefore H is a constant function. Since H(0) = 0, we obtain the
conclusion. □
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