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Countably Many Positive Symmetric Solutions For Sturm
Liouville Type Boundary Conditions Of Second Order
Iterative System

K. R. PRASAD and K. BHUSHANAM

ABSTRACT. In this paper we consider second order iterative boundary value problem with Sturm Liouville
type boundary conditions and establish the existence of countably many positive symmetric solutions by using
Krasnoselskii’s fixed point theorem for operator on a cone.

1. INTRODUCTION

Most of the real-world problems in the universe include complex systems with several
degrees of freedom, requiring a set of differential equations under specific assumptions.
Developing a model for complex systems is the first challenge step, followed by investi-
gating the potential solutions. In recent years, much attention has been focused on the
iterative system of nonlinear boundary value problems (BVPs) associated with ordinary
and fractional differential equations, see [1, 3, 11, 14, 20].

Eloe, Henderson and Kosmatov [7] demonstrated the existence of countably positive
solutions for the following boundary value problem

(=)™ (1) = f(u(t)), 0 <t <1,
u®(0)=0,i=0,1,--- ,k—1,
u(1)=0,7=0,1,---,n—k—1,
wheren > 2,and k € {1,--- ,n — 1}
In 2011, Sun [19] considered second order two-point BVP
u”(t) + g(t) f(t,u(t)) =0, t € [0,1],

u(0) =u(l) = /0 m(s)u(s)ds,

and established the existence of three symmetric positive solutions by using Leggett-
Williams fixed point theorem.

Following that, the researchers have studied the existence of positive symmetric solu-
tions, see [2, 6, 13, 15, 17], and countably many positive solutions, see [10, 18, 21, 22].

Inspired by the aforementioned works, in this paper, we consider the second order
iterative BVP with Sturm Liouville type boundary conditions,

{ Vi (@) + (@) iy (2) =0, 1<k <7, 0 < @ < p,

1.1
D Yrsa(2) = y1(2), 0< 2 < p,
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115%(0) = p2yi(0),
(12) o
my(p) = —p2yi(p),
where 7 € N, ¢(x Hz/zs € LP[0,p], (ps = 1), w1, pe are positive constants,

A = pu(pip + 2u2), and estabhsh the existence of countably many positive symmetric
solutions by employing the Krasnoselskii’s fixed point theorem.

Definition 1.1. [19] A function y(z) : [0, p] — R is said to be symmetric on [0, p] if for any
z €00, y(2) =y(p - 2).
Definition 1.2. [19] Let B be a real Banach space. A nonempty closed convex P C Bis
called a cone if it satisfies the following conditions:

)reP,a>0 = areP.

(i) reP, -reP = r=0.

Definition 1.3. [19] Suppose P is a cone in a Banach space B. The map F is a non negative
continuous concave functional on P provided F : P — [0, 00) is continuous and

F(rd1 + (1 —xr)de) > x F(V1) + (1 — ) F(2)
forall ¥y,93 € Pand r € [0,1].

Definition 1.4. [19] An operator is called completely continuous if it is continuous and
maps bounded sets into precompact sets.

Theorem 1.1 (Arzela-Ascoli [5]). A subset A of C([a,b], R) is relatively compact if and only if
it is bounded and equicontinuous.

We assume the following conditions are true in the entire paper

Z1) hy :[0,00) = [0,00) is continuous, 1 < k < 7.

72) 9, € LP+[0,p] for 1 < p, < 00, P, is symmetric on [0, p], and each ;s does not vanish
identically on any sub interval of [0, p]. Further, 3 as > 0 3 as < 9¥5(z) < 00, a.e. on
[0,p], s=1,2,---,2

The remaining part of the paper is arranged as follows. In section 2, we construct

Green’s function for the homogeneous BVP corresponding to (1.1)-(1.2) and obtain bounds

for the Green’s function. In section 3, we develop criteria for the existence of countably

many positive symmetric solutions of (1.1)-(1.2) by using Krasnoselskii’s fixed point the-

orem. Finally, we give an example to illustrate our results in section 4.

2. PRELIMINARY FINDINGS

In this section, we determine Green’s function for the homogeneous BVP correspond-
ing to (1.1)-(1.2) and certain lemmas on Green’s function are established. These lemmas
are useful in demonstrating our main findings.

Lemma 2.1. Let w(z) € C([0, p],R). Then the unique solution of BVP
(2.3) vi(z) +w(z) =0, 0< z < p,

{ p1y1(0) = p2y’ (0),

(2.4) 11y1(p) = —p2y’(p),

is

(2.5) yi(z) = /OP G(z, r)w(r)dr
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in which
par + p2)(pa(p — @
(2.6) G(z,r)=— (
A | (pz + p2)(p(p

Proof. The corresponding integral equation for (2.3) is

/ / w(ry)dridr + a1z + az

——/ (z — rw(r)dr + a1z + ag,
0
where a;, as are constants. By using boundary conditions (2.4), we get

- m /p(m(p — 1) + po)w(r)dr,

=t [ (o 1)+ pelr)dr
= [N sl =) + )

So, we have,

y1(z) /Ow(:z: —rw(r)dr + WETM) /p(m(p — ) + po)w(r)dr+
T /p%(ﬁ) — 1) + pz)e(r)dr
_l [/I(/m" + p2)(p1(p — x) + po)w(r)dr + /p(ulx (o) 4 s

/ G(z,r)w
where G(z,r) is in (2.6). O
= Mt they G(x, 1) has the following properties:

Lemma 2.2. Forn € (0,p/2), let o(n) = L2112,
i) 0< G(z,r) < G(r,r), Ya,r €[0,p]
ii) G(z,r) =2 o(n)G(r,r),Vz €np—mnland r |0, p|.

lll) G(p —Z,p— 7’) = G(I7T)a Vz,r € [Oap}

Proof. We can easily establish the inequality (¢). For inequality (iz), let z € [, p — 7]

thenfor0 < r < z,
Gz,r) _pmlp—o) +p2
f— O- 5
Glrr) ~ mlp=r) > "
and for z < r < p,
G(I,’f’) _ /’le+/~t2 S U(n)

G(r,r)  par+ps

Hence, the inequality (7).

For the inequality (ii7), consider
1 f(ualp—7)+p)(palp—(p—2)) +p2), 0Sp—r<p—z
G(p—x’p—’l“)zf
A (ump—2) +p2)(pi(p—(p—1) +p2), p—z < p—1<p,
1 (e = 1)+ p)(m(2) + p2), z <7 <y
A (p(p =) + p2)(pa(r) + p2), 0 < r < w,
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This completes the proof. O

Lemma 2.3. Let w(x) be continuous and symmetric on [0, p|. Then the solution yi(z) of (2.3)-
(2.4) is symmetric on [0, p).

Proof. Consider

yi(p— ) = Glp— 7, r(r)dr

:/ Glp—z,p—r)w(p—r)d(p—r1)

= /P G(z,r)w(r)dr
0
=y1(z).

Therefore y;(z) is symmetric on [0, p]. O

Notice that an 7-tuple (y1(z),y2(z), - ,y-(2)) is a solution of (1.1)-(1.2) if and only if

yilz) = / " 6w ) i (N)dr, 2 € 0.9, 1<k <7,
yr+1(2) =yi(z), z € [0, p],

Equivalently,

5@ = [ meam( [ 6o [ o nm.-
hos UP G(rr, rT)w(rT)hT(yl(rT)drT} ~~~dr3>dr2) drr.

0

3. MAIN RESULTS

In this section, we establish the existence of countably many positive symmetric so-
lutions for (1.1)-(1.2) by using Krasnoselskii’s theorem and Ho6lder’s inequality. Let B €
C([0, p], R) be a Banach space with norm ||y| = m[%x] ly(z)]. For n € (0,%), define the

z€|0,p

cone P C Bas P = {y € B : y(z) is non negative, concave, symmetric and nglupn_ . y(z) >
a(n)llyll}-
For any y; € P, define an operator F : P — B by
p p p
Foite) = [ Gamvtm ([ 6on oot [ 6t mt)--
O AR T AR PR LR

Lemma 3.4. Assume that (Z1)-(Z2) hold. Then for eachn € (0, %), F(P) C Pand F : P — P
is completely continuous.
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Proof. From lemma (2.2), G(z,7) > 0, V z,r € [0, p], then (Fy1)(z) > 0. Lety; € P, then

v -a) = [ 6= smysmm ([ 6tmetan( [ 6w

p

By [ / "G, mw(n)hf(ylm))dn} . 'dT3)d7’2> an,
:/po Gl —z,1—r)(l—r)h (/Op G(1— 71, ma)ib(r2)
h( / " G, () e [ / "6, w)zﬁ(n)hT(yl(rT))dn}
-~dr3> dr2>d(1 — )

/Op Gz, m)(r1)hy (/Op G(r1, 7”2)111(7”2)}12(/; G(ry,73)

() oy [ / "G, mw(m)hr(m(n))dn} ~-~dr3) d?“2>d7’1
=(Fy1)(z).

Hence Fy; is symmetric on [0, p].

Similarly by Lemma 2.2, we obtain
P P P
(Fy1)(z) </ G(ﬁ,ﬁ)l/’(?"l)hl(/ G(Tl,T’QW(TQ)hz(/ G(ra,73)
0 0 0

() s [ / "6, r»w(mm(ylm))dn} . -drz,)d?“z)dﬁ-
So,

[(Fy)ll </Op G(r, r)Y(r)h </OP G(ri, T2)¢(7”2)h2(/0p G(ra,73)
P(r3)---hr 1 [/Op G(rr—1, Tr)d)(?"r)hT(yl(rT))drT] . ~dr3> dw)dm.

Again from Lemma 2.2, we get

min {(]:yl)( )} > / Grl,rl)vj;(rl)lu( ; G(r1, ) (r2)h </ G(r2,13)(r3)

z€[n,p—n]
che_1 {/P G(rr—1, rT)w(TT)hT(yl(rT))drT] . -dr3>dr2>dr1.
0

By using above two inequalities one can write,

min {(Fy1)(z)} = e (Fy)ll

z€ln,

So, Fy1 € P and F(P) C P. By using Arzela-Ascoli theorem and stranded methods it can
be prove easily F is completely continuous. O

Theorem 3.2. (Holder 's[11]) . Let f € LPS[O 1] with ps > 1, fors = 1,2,--- ,z and

. Hfs

Z— = 1. Then I—IfS € L'0,1] and H 1 fsl,, - Further, if f € L'[0,1] and
g € 1[0, 1], then fg er (0,1] and || fgll» < Hf|| HgHoo

=1 Ps
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Theorem 3.3. (Krasnoselskii's[9]). Let P be a cone in a Banach space B and A1, A2 are open
sets with 0 € A, A1 C Aa. Let F : PN (A2 \ A1) — P be completely continuous operator such
that

a) |Fz|| < |lz|, z € PN IO, and || Fz|| = ||z|, z € PN IXg, 0r
b) ||Fz|| = ||z]l, £ € PN O, and | Fz|| < ||z]|, £ € P NOAe.

Then F has a fixed point in P N (A2 \ A\1).
We consider the cases for ¢, € LP+[0, 1]

(1)Z—<1 (11)2%:1, (111)Z—>1

s=1
z

1
Firstly, we seek countably many positive symmetric solutions for the case E — <L
Ps
s=1

Theorem 3.4. Suppose that (Z1)-(Z2) hold. Let {x;}3° | be decreasing sequence with upper bound
p/2 and {ne}3°, be a sequence with 1y € (o041, 20). Let {Re}2, and {M;}32, be such that

Rep1 <o(ne)My <My < QM <Ry, £ €N,

where

szax{[ M) Hak/p " nr)dr] ,1}.

Further assume that hy satisfies
(C1) Mi(y) < O1Re, V2 €0,p], 0 <y <Ry,

where ) »
01 < [16lha TT Il |
s=1

(C2) hi(y) = QMy, Vz € [ne, p — ne);, neMy <y < My

Then (1.1)-(1.2) has countably many positive symmetric solutions { ( y1 ,y[Q], ,yg])};il such
thatyk ( ) = 0on [Oap]7 k= 1727' T
Proof. Let

A= {yeB:|yll <R},

Xoe={y € B: |yl <M},
be open subsets of B. From the hypothesis we can write

z* <xg+1<m<:cg< ,VIeN,

where z* = limy_, ., 2¢. For each ¢ € N, define the cone P, by

Py = {y € B : y(z) is non negative, concave, symmetric and [min ]y(ac) > o(ne)yll}-
TEMe,P—Ne

Lety, € PN OA1e. Then, y1(r) < Ry = ||y1|| forall » € [0, p]. By (C1) and for .1 € [0, p],
we have

[ GOrmstha it ars < [ Gl )b e )
0 0

p
< Ole/ G(rr, )0 (rr)dr,
0

P z
Ole/ G(rryrr) H’L/JS(T'T)dTT.
0 s=1
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1 z

From (i), 3 q > 1 such that — + Z — =1
4 s=1 Ps

So,

P
[ 6yt 51 (7)) < OLRe| G
0

ITvs
s=1

< O1Re|| Gla [T lebs e

s=1

LPs

< Re.

Similarly for r._s € [0, p]

p p
/ G(T’T72) 7”7-71)'1/)(7“771)}%-71 |:/ G(TT*:[? Tr)w(rr)hr(m(?”n))dﬁr} dr‘rfl
0 0
p
g/ G(T7'727T‘Tfl)w(n'fl)hrfl(RZ)dr'rfl
0
p
g-/ G(T‘T*laT‘rfl)w(""rfl)hTfl(Rl)dr'rfl
0

p
< OlRe/ G(rr—1, mr—1)(rr—1)drr—1
0

P z
< OlRe/ G(rr-—1,77-1) H Ys(rr—1)drr—1
0 s=1

< O1R|| Gl [T s e
s=1

< Ry.

Continue, we get

p

Fy)@) = [ Clam)b(r)h ( / ey mwm)hg( Gra, 1)(r3) - -

0 0

By [ / "6, nw(mhf(yl(n))dn] ---dr3>d7"2>d7‘1

< Ry
Since R, = ||y1]| for y1 € Py N IOy 1, we get
(3.7) [Fyll < flyall-

Let z € [n¢, p — n¢]. Then

Me=|ly1ll Zyi(z) = min  yi(z) = o(ne)|ly1l = o(ne)Me.
€ [ne,p—me)
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By (C2) and for rr_1 € [n¢, p — n¢], we have

/0 " Gty 1 Y0 Yo (31 () )y > () / T G () e (31 () )y

2 o(ne)Q Mz/ G(rryre)(rr)dry
e
p—"e z
> a(ne)Q Mg / G(re,re) [ s (rr)drs
s=1

e
P—M

a(n)Q MzHas/ G(ry,rr)dr,
s=1

m
> M.

Then,

(Fyi)(z / G(z ﬁ)w(n)h1< i G(n,rz)w(m)@(/op G(ra, r3)1h(r3) - - -
By [ / Cren, rTwm)hT(yl(rT))dn] d)d)d

=M.
Thus if y; € P, N 02y, then
(3.8) [Fyill = lly]l-
Itis evident that0 € OXg ¢ C 85\“ C OA1 . From (3.7), (3.8), by Theorem 3.3, F has a fixed
point y1 €PN (Mg \Aag) 2 y[f]( ) = 0on [0, p] Next setting Yyr+1 = y1, we obtain
countably many positive symmetric solutions {( y1 ,y[z], e ,yT } -, of (1.1)-(1.2) given
by

/ Gz, ") (r)hk(yxs1(r))dr, x € [0,p], 1 <k < 7.

The proof is completed. 0

z

1
For E — = 1, we have the following theorem.
Ps
s=1

Theorem 3.5. Suppose that (21)-(Z22) hold. Let {x}32, be a decreasing sequence with upper
bound p/2 and {n,}72, be a sequence with 1y € (xp41,x¢). Let {Re}72, and {M,}3°, be such
that

Rg_._l < U(T]g)Mg <M, < Q M, < Rg, { e N,

Q—max{[ ) Has/p " r,r)dr]_l, 1}.

Further assume that hy satisfies
(C3) hk(y) < O2Ry, Yz €10,p], 0 <y <Ry,

where L
0, < min{ [||G||Loo H lws||LPs:| 7Q}7
s=1

(C4) hi(y) = QMy, YV z € [1ne, p — me], neMy <y < M.

where
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Then (1.1)-(1.2) has countably many positive symmetric solutions { ( [f] , y[;], . ,yT }é | such that
i (2) > 00n[0,p], 1<k <7,
Proof. From the hypothesis we can write
x* <:Bg+1<77@<$g< , V2eN,

where z* = limy_, 2¢. For a fixed ¢, let A\; ¢ be as in the proof of Theorem 3.4, and let
y1 € PN OA1e. Again

y1(z) < Re = [y
for all z € [0, p]. By (C3) and for r,_; € [0, p], we have

/p G(rr—1, 7)Y (1) her (1 (7)) dry < /p G(rr, o )(re)hr (1 (7)) drr
0 0
< QZRK/O G(T’q—, T‘r)w(rr)drr

< Q2Ry /p G(rr,7r) H Vs (rr)drr
0

< QaRe|| Gl T lIes]

s=1

LPs

< Ry
Similarly for r._, € [0, p]

p p
/ G(T-,—27’f'-,—1)’(/1(7“71)h7—1|:/ G(Tr1>TT)¢(7’T)hT(Y1(Tn))dTT} d""‘rfl
0 0
p
g/ G(TT—QaT‘r—l)w(rT—l)hT—l(RZ)dT‘r—l
0
p
< / G(rr 1,771 )(rr1)hr 1 (Re)dry
0

p
< Q2R€/ G(rrflarrfl)w(r'rfl)drrfl
0

p z
< Q2R€/ G(rrfla TT*l) H ws(r‘rfl)d'r'rfl
0

LPs

< QoRe| Gl T Il
s=1

<Ry

Continue, we get

(Fyi)( / G, r)(r)h (/ Grl,r2)¢(r2)h2</(Jp Gra, 7)(r3) - -
hrs [ I G(rf_l,nw(mhxyl(m)dn] ~~d7"3>drz>dn

0
<Ry.
Since R, = ||y1]| for y1 € Py NIy 4, we get
(3.9) [Fyill < llyall-
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Now define Ao o = {y1 € B: [[y1]| < M¢}. Lety; € P,NdA2y, and let z € [ng, p— ). Then,
the argument leading to (3.8) can be followed to the present case. Hence, the result. O

z
1
Lastly, consider the case Z — > 1
s=1 Ps

Theorem 3.6. Suppose that (21)-(Z2) hold. Let {x}32, be a decreasing sequence with upper
bound p/2 and {n,}72, be a sequence with 1y € (x¢41,x¢). Let {Re}72, and {M,}72, be such
that

Req1 <o(ng)My <My < QM <Ry, L €N,

QZmax{[ m) Has/ o r,r)drl_l, 1}.

Further assume that hy satisfies

(C5) hi(y) < O3Re, V2 €10,p], 0<y <Ry,
where

where

z —1
0 <minf [I6l- [T Ivali] ).
s=1

(C6) hi(y) = QMy, YV z € [, p — me], neMy <y < M.
[

Then (1.1)-(1.2) has countably many positive symmetric solutions { vt ,y2 e aYn }z  such that
l[f]( ) = Oon [O7p}7 1< X k < X Tandl € N.

Proof. The proof is similar to the proof of Theorem 3.5. Therefore, we omit the details here.

O

4. EXAMPLE

In this section, we give an example to illustrate our main results.
Consider the following BVP

(CC) 1/’( )hk(Yk+1( )) = 07 0 g r < 1ak = 1727
410 { 5(@) = y1(2), 0 <z < 1,
7(0) = 2 y1(0),
@10 {yku) — 2y,
where

Y(z) = 1(z)a(z)

1 1
————.1 and ¢o(z)= —F— 7~
lz—31+3]2 lz -3+ 1)z

in which 1 (z) =
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2
o ¥ 1071 y e (1071, 00),

37 x 10711645 — 2 510 (110)
10— (11e+5) _ 10— (11¢)
y c [10—(11[—"—5)7 10—(11£)L

2
_ 10—(11@) - 10—(11[)
(v )+ T ,

hi(y) = ha(y) = < 37 x 10~ (145 y (% x 107 (1H5) 10— (11+5)y)

37 % 107(115%»5) _ % % 107(115%*7)
% x 10— (ALe+5) _ 10— (11€+7)

2
_10-(11e+7)
(y )+ 51

1
X 107(11(“1’7)’ y c [107(1144’7)7 g X 107(111@#5)]7

0, y=0.
23 1 1
Let = — — P == {=1.2.3. ...
et, Ty 57 ; 3(1 + 1)6’ Te 2($£ +.’L‘,@+1), 5 Ly Dy )
then,
_ M5 11453
T 3648 T 4374 T 3648
and

1
To41 < T < Ty, TM>37£:172’37""

It is clear that,
1453 1 1

- = (=1,2,3,-- .
3648<27x/ To41 3((_’_2)6’ 3 Ly 0y

z1

=1 7x? =1 b
Since E ey and E = 915’ it follows that
i=1 i=1

e 6

¥ = lim oy = — — - = - =,
tmoo ' BT 4=3(i+1)0 19 2835 5
Let 1,12 € LP[0,1], for 1.1 < p < 200. Since 0.9 < ¢1(z) < 1.3,1.3 < ¢a(z) < 3.4,
0<z<1.So Jas; eR 3 as < < 0. Let g = ag = 1/2, then
171058529

1-m 2659392
/ G(r,r)dr = G(r,r)dr = 0.2546792670.
m 1058629

2659392

We get
o 1—m -1
Q :max{ a(m) H as/ G(r,r)dr| 1}
s=1 m
= max{19.64832215, 1}
=19.64832215.
Case 1:

1 q
[GllLa = {/ |G(r,r)|qdr} < 1.3, forany q € (1, 2].
0
Since 11,12 € LP[0, 1], it follows that

-1
Lpb} < 0.4114451085.

0.2104647218 < [||G|Lq Tl
s=1

255
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Taking O, = 0.1022008, in addition if we take
RE — 10—115’ MZ — 10—(11(-&-5)7
then,

1
Ryypq = 10711 2 = X 10~ (MH3) < M, < My = 10~ 119 < R, = 10711,

Q M, = 19.64832215 x 10~ 15 < 0.1022008 x 10~ = O4Ry, £ =1,2,3,-- -,
and hq, hy satisfies the following growth conditions,

hi(y) = ha(y) < O1 Ry = 0.1022008 x 1071, y € [0,107 1)
1
hi(y) = ha(y) = Q M, = 19.64832215 x 10~ (1H+9) ¢ ¢ {5 x 107 (11+) 10— (11E+5)

for ¢ € N. Hence all the conditions in Theorem 3.4, are satisfied The BVP (4 10)-(4.11) has
countably many positive symmetric solutions {(y.?,y4')} > o, such that y; (z) > 0 on
[0,1], k=1,2and £ € N.

Case 2:
-1

0.2341835419 < {||G|Lw I1 ||z/J5Lpt] < 0.3889529640.
Taking O5 = 0.1589454 then,
Ryyq = 10~ (141D o 2 1 10~ (1H9) < M, < M, = 10-(1+9) < R, = 10~ 11
5 )

Q M, = 19.64832215 x 10~ 145 < 0.1022008 x 10~ = O4Ry, £ = 1,2, 3, -
and hq, hy satisfies the following growth conditions,

hi(y) = ha(y) < Oz Ry = 0.1022008 x 1071, y € [0,10711)

1
hi(y) = ha(y) = Q M, = 19.64832215 x 10~ 11+ y ¢ = X 10~ (116+5) 10~ (116+5)

for ¢ € N. Hence all the conditions in Theorem 3.5, are satisfied The BVP (4.10)-(4.11) has

countably many positive symmetric solutions {( y1 ,y2 } -, such that y[ ]( ) = 0on
[0,1], k=1,2and £ € N.

Case 3:

z -1
{|G||Lx 11 ||¢5||L1] < 0.4059591736.
Taking O3 = 0.1845561 then,
Ry = 107161 < % x 10~ < My < My = 10~ < R, = 10711,

Q M, = 19.64832215 x 10~ 15 < 0.184556 x 10~ = O3R,, £ =1,2,3,---,
and hq, hs satisfies the following growth conditions,

hi(y) = ha(y) < O3 Ry = 0.184556 x 1071, y € [0, 10711
1
hi(y) = ha(y) > Q M, = 19.64832215 x 10”11+ y ¢ = X 10~ (116+5) 110~ (116+5)

for ¢ € N. Hence all the conditions in Theorem 3.6, are satisfied The BVP (4 10) (4.11) has
countably many positive symmetric solutions { 1 ,y2 )}or ,—, such that y ( ) = 0on
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[0,1], k =1,2and ¢ € N.
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