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Fixed point theorem for composition of multivalued and
single-valued mappings in Banach spaces

T. M. M. SOW

ABSTRACT. In this paper, we present a new characterization for finding a solution of common fixed points
problem involving multivalued and single-valued mappings in Banach spaces by applying the properties of
composition without commuting assumption. We equally obtain a convergence result to a solution of system of
inclusion problems in Banach spaces. Our results unify, generalize and complement various known comparable
results from the current literature.

1. INTRODUCTION

Let E be a real normed space and let S := {x ∈ E : ∥x∥ = 1}. E is said to be smooth, if the
limit

lim
t→0+

∥x+ ty∥ − ∥x∥
t

exists for each x, y ∈ S.E is said to be uniformly smooth if it is smooth and the limit is
attained uniformly for each x, y ∈ S. Let Jq denote the generalized duality mapping from E

to 2E
∗

defined by

Jq(x) :=
{
f ∈ E∗ : ⟨x, f⟩ = ∥x∥q and ∥f∥ = ∥x∥q−1

}
,

where ⟨., .⟩ denotes the generalized duality pairing. J2 is called the normalized duality
mapping and is denoted by J. The modulus of convexity of E is the function δE : (0, 2] →
[0, 1] defined by:

δE(ϵ) := inf
{
1− 1

2
∥x+ y∥ : ∥x∥ = ∥y∥ = 1, ∥x− y∥ ≥ ϵ

}
.

A normed linear space E is uniformly convex if and only if δE(ϵ) > 0 for every ϵ ∈ (0, 2].
For p > 1, E is said to be p-uniformly convex if there exists a constant c > 0 such that
δE(ϵ) ≤ cϵp for all ϵ ∈ (0, 2]. Observe that every p-uniformly convex space is uniformly
convex.

Typical examples of such spaces are the Lp, lp and Wp
m spaces for 1 < p < ∞ where,

Lp ( or lp ) or Wp
m is

(1) 2-uniformly smooth and and p-uniformly convex if 2 ≤ p < ∞;
(2) 2-uniformly convex and and p-uniformly smooth if 2 < p < 2.

It is well known that E is smooth if and only if J is single valued.
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Let K be a nonempty subset of a normed space E.The Pompeiu Hausdorff metric on
CB(K) is defined by:

H(A,B) = max
{
sup
a∈A

d(a,B), sup
b∈B

d(b, A)
}

for all A,B ∈ CB(K) (see, Berinde [3]). A multi-valued mapping T : D(T ) ⊆ E → CB(E)
is called β-Lipschitzian if there exists β > 0 such that

(1.1) H(Tx, Ty) ≤ β∥x− y∥ ∀x, y ∈ D(T ).

When β ∈ (0, 1), we say that T is a contraction, and T is called nonexpansive if β = 1. An el-
ement x ∈ K is called a fixed point of T if x ∈ Tx. For single valued mapping, this reduces
to Tx = x. The fixed point set of T is denoted by Fix(T ) := {x ∈ D(T ) : x ∈ Tx}. For
several years, the study of common fixed point problems involving multivalued and sin-
glevalued mappings has attracted, and continues to attract, the interest of several well
known mathematicians (see, for example, [7, 9, 8, 11]). Interest in such studies stems, per-
haps, mainly from the usefulness of such fixed point theory in real-world applications,
such as in Game Theory and Market Economy and in other areas of mathematics, such
as in Non-Smooth Differential Equations and Differential Inclusions, Optimization the-
ory. We describe briefly the connection of fixed point theory for multi-valued mappings
with these applications.

1.1. Optimization problems with constraints. Let f : H → R∪{+∞} be a proper convex
lower semicontinuous function and A : H → H be a single-valued mapping. Consider the
following optimization problem:

(P )

 min f(x)

0 = Ax.

It is known that the multivalued map, ∂f the subdifferential of f, is maximal monotone,
where for x,w ∈ H ,

w ∈ ∂f(x) ⇔ f(y)− f(x) ≥ ⟨y − x,w⟩, ∀ y ∈ H

⇔ x ∈ argmin(f − ⟨·, w⟩).
It is easily seen that, for x ∈ H with x is a solution of (P ) if and only if

x ∈ Fix(T1) ∩ Fix(T2),

with T1 := I − ∂f and T2 := I −A, where I where I is the identity map of H . Therefore, x
is a solution of (P ) if and only if x is a solution of common fixed point problem involving
multivalued and single-valued mappings.
Mustafa and Sims [6] introduced the G-metric spaces as a generalization of the notion of
metric spaces.

Definition 1.1. [6] Let X be a non-empty set, G : X×X×X → R+ be a function satisfying
the following properties

(1) G(x, y, z) = 0 if x = y = z,
(2) 0 < G(x, x, y) for all x, y ∈ X with x ̸= y,
(3) G(x, x, y) ≤ G(x, y, z) for all x, y, z ∈ X with y ̸= z,
(4) G(x, y, z) = G(x, z, y) = G(y, z, x) (symmetry in all three variables),
(5) G(x, y, z) ≤ G(x, a, a) +G(a, y, z) for all x, y, z, a ∈ X (rectangle inequality).

Then the function G is called a generalized metric, or, more specially, a G-metric
on X, and the pair (X,G) is called a G-metric space.



Common fixed point approach 283

Recently, N. Tahat et al. [12], proved the following theorem for common fixed points
problem involving single-valued and multivalued maps in G-metric spaces.

Theorem 1.1. [12] Let (X,G) be a G-metric space. Set g : X → X and T : X → CB(X).Assume
that there exists a function a α[0,+∞) → [0, 1) satisfying lim sup

r→t
α(r) < 1 for every t ≥ 0 such

that
HG(Tx, Ty, Tz) ≤ α(G(gx, gy, gz))G(gx, gy, gz),

for all x, y, z ∈ X. If for any x ∈ X,Tx ⊆ g(X) and g(X) is a G-complete subspace of X, then
g and T have a point of coincidence in X. Furthermore, if we assume that gp ∈ Tp and gq ∈ Tq
implies G(gq, gp, gp) ≤ HG(Tq, Tp, Tp), then

(1) g and T have a unique point of coincidence.
(2) If in addition g and T are weakly compatible, then g and T have a unique common fixed

point.

Remark 1.1. Most existing results for solving common fixed points problem require that
the operators of underlying operators must be commuting and also, the intersection of
the fixed point sets Fix(T1) ∩ Fix(T2) must be nonempty.

Motivated and inspired by the above work, we propose a new appraoch for solving com-
mon fixed points problem involving multivalued and single-valued mappings by using
composition properties in Banach spaces. As application, we use our new results and a
modified Mann algorithme for solving system of inclusion problems in Banach space.

2. PRELIMINARIES

Let E be a smooth real Banach space with dual space E∗. We introduce the the Lyapunov
functional ϕ : E × E → R, defined by,

(2.2) ϕ(x, y) = ∥x∥2 − 2⟨x, Jy⟩+ ∥y∥2 ∀x, y ∈ E.

It was introduced by Alber in [1] and has been studied by Alber and Guerre-Delabriere
[2], Kamimura and Takahashi [5] and a host of other authors. Note that if E = H, a real
Hilbert space, then the normalized duality map J is the identity map. Hence, equation
(2.2) reduces to ϕ(x, y) = ∥x− y∥2 for x, y ∈ H.
In the sequel, the following result will be useful.

Lemma 2.1. [1] For p > 1, let E be a p-uniformly convex real Banach space and let S be a bounded
subset of E. Then, there exists α > 0 such that :

α∥x− y∥p ≤ ϕ(x, y) ∀x, y ∈ S.

The following definition contains the nonlinear mapping we are working with and that
will appear throughout the entire paper.

Definition 2.2. Let E be a smooth real Banach space and T : D(T ) ⊂ E → E, then T is
said to be firmly nonexpansive if for all x, y ∈ D(T ), we have

∥Tx− Ty∥2 ≤ ⟨x− y, J(Tx− Ty)⟩.

The resolvent operator has the following properties:

Lemma 2.2. [4] For any r > 0,
(i) A is accretive if and only if the resolvent JA

r of A is single-valued and firmly nonexpansive;
(ii) A is m-accretive if and only if JA

r of A is single-valued and firmly nonexpansive and its
domain is the entire E;
(iii) 0 ∈ A(x∗) if and only if x∗ ∈ F (JA

r ), where F (JA
r ) denotes the fixed-point set of JA

r .
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Lemma 2.3 (Song and Cho [10]). Let K be a nonempty subset of a real Banach space and
T : K → P (K) be a multi-valued map. Then the following are equivalent:
(i) x∗ ∈ Fix(T );
(ii) PT (x

∗) = {x∗};
(iii) x∗ ∈ Fix(PT ). Moreover, Fix(T ) = Fix(PT ).

3. MAIN RESULTS

We now state and prove the following theorem.

Theorem 3.2. For p > 1, let E be a p-uniformly convex smooth real Banach space and K be
a closed, bounded, convex set in E.Let T1 : K → K be a firmly nonexpansive mapping and
T2 : K → CB(K) be a multivalued nonexpansive mapping such that T2p = {p} ∀ p ∈ Fix(T2)
and Fix(T2) ∩ Fix(T1) ̸= ∅.Then, Fix(T2) ∩ Fix(T1) = Fix(T2 ◦ T1) and T2 ◦ T1 is a
multivalued nonexpansive mapping on K.

Proof. First, we observe that Fix(T2)∩Fix(T1) ⊆ Fix(T2 ◦T1). Let p ∈ Fix(T2)∩Fix(T1)
and q ∈ Fix(T2 ◦ T1). By using properties of T2, we have

∥q − p∥2 ≤ H(T2 ◦ T1q, T2p)
2

≤ ∥T1q − p∥2.(3.3)

Using the fact that T1 is firmly nonexpansive, we have

(3.4) ∥T1q − p∥2 ≤ ⟨q − p, J(T1q − p)⟩.
Furthermore, using properties of Lyapunov function, we have

ϕ(q − p, T1q − p) = ∥q − p∥2 − 2⟨q − p, J(T1q − p)⟩+ ∥T1q − p∥2.
Hence,

(3.5) ⟨q − p, J(T1q − p)⟩ = 1

2

(
∥q − p∥2 + ∥T1q − p∥2 − ϕ(q − p, T1q − p)

)
.

Using (3.4) and (3.5), we obtain

(3.6) ∥T1q − p∥2 ≤ ∥q − p∥2 − ϕ(q − p, T1q − p).

From (3.3), we have
ϕ(q − p, T1q − p) ≤ 0.

By lemma 2.1, we have ∥T1q − q∥ = 0 which implies that

q = T1q.

We obtain,
q = T1q ∈ T2 ◦ T1q = T2q.

Thus, q ∈ Fix(T2) ∩ Fix(T1). Hence,Fix(T2) ∩ Fix(T1) = Fix(T2 ◦ T1).
Next, we show T1◦T1 is a nonexpansive mapping on K. Let x ∈ K and y ∈ K. We observe
that,

H(T2 ◦ T1x, T2 ◦ T1y) ≤ ∥T1x− T1y∥
≤ ∥x− y∥.

This completes the proof. □

Corollary 3.1. Let E = Lp, 2 ≤ p < ∞ and K be a closed, bounded, convex set in E.Let
T1 : K → K be a firmly nonexpansive mapping and T2 : K → CB(K) be a multivalued
nonexpansive mapping such that T2p = {p} ∀ p ∈ Fix(T2) and Fix(T2) ∩ Fix(T1) ̸= ∅. Then,
Fix(T2) ∩ Fix(T1) = Fix(T2 ◦ T1) and T2 ◦ T1 is a multivalued nonexpansive mapping on K.
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Proof. Since Lp-spaces, 2 ≤ p < ∞ are p-uniformly convex smooth, then the proof follows
from Theorem 3.2. □

Corollary 3.2. For p > 1, let E be a p-uniformly convex smooth real Banach space and K be
a closed, bounded, convex set in E.Let T1 : K → K be a firmly nonexpansive mapping and
T2 : K → K be a nonexpansive mapping such that Fix(T2) ∩ Fix(T1) ̸= ∅.Then, Fix(T2) ∩
Fix(T1) = Fix(T2 ◦ T1) and T2 ◦ T1 is a nonexpansive mapping on K.

Proof. Since single-valued nonexpansive mappings is a particular case of multivalued
nonexpansive mappings, then the proof follows from Theorem 3.2. □

Now, using the similar arguments as in the proof of Theorem 3.2 and Lemma 2.3, we ob-
tain the following result by replacing T2 ◦T1 by PT2

◦T1 and removing the rigid restriction
on Fix(T2) (T2p = {p}, ∀ p ∈ Fix(T2)).

Theorem 3.3. For p > 1, let E be a p-uniformly convex smooth real Banach space and K be a
closed, bounded, convex set in E.Let T1 : K → K be a firmly nonexpansive mapping and T2 :
K → CB(K) be a multivalued mapping such that PT2

is nonexpansive and Fix(T2)∩Fix(T1) ̸=
∅. Then, Fix(T2)∩Fix(T1) = Fix(PT2◦T1) and PT2◦T1 is a multivalued nonexpansive mapping
on K.

4. APPLICATION

Solving system of inclusion nonlinear problems in any Banach space (real or complex
nonlinear equations, nonlinear systems, and nonlinear matrix equations, among others) is
a non-trivial task that involves many areas of science and technology. Usually the solution
is not directly affordable and requires an approach utilizing iterative algorithms. This is
an area of research that has grown exponentially over the last few years.

Problem 4.1. Let K be a nonempty, closed convex subset of a real Banach space E. We consider
the following monotone inclusion problem :

(4.7) find x ∈ K such that 0 ∈ Ax,

where A be a set-valued mapping.

We denote the set of solutions of Problem 4.1 by Ω1.

Problem 4.2. We also consider the following inclusion fixed point problem :

(4.8) find x ∈ K such that x ∈ Tx,

where T : K → CB(K) be a multivalued mapping.

We denote the set of solutions of Problem 4.1 by Ω2. Recently, Sow [11] motivated by the
fact that Mann algorithm method is remarkably useful for finding fixed points of nonlin-
ear mappings, proved the following theorem.

Theorem 4.4. Let E be a uniformly convex real Banach space having a weakly continuous duality
map Jφ and K be a nonempty, closed and convex cone of E. Let T : K → CB(K) be a multivalued
nonexpansive mapping nonexpansive mapping with convex-values such that Fix(T ) ̸= ∅ and
Tp = {p}, ∀p ∈ Fix(T ). Let {xn} be a sequence defined iteratively from arbitrary x0 ∈ K by: yn = βnxn + (1− βn)vn, vn ∈ Txn,

xn+1 = αn(λnxn) + (1− αn)yn

(4.9)
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{βn}, {λn} and {αn} be sequences in (0, 1) satisfying:
(i) lim

n→∞
αn = 0; (ii) βn ∈ [a, b] ⊂ (0, 1),

(iii) lim
n→∞

λn = 1 and
∞∑

n=0

(1− λn)αn = ∞.

Then, the sequence {xn} generated by (4.10) converges strongly to x∗ ∈ Fix(T ).

We now state and prove the following theorem.

Theorem 4.5. Assume that E = lp, 2 ≤ p < ∞. Let K be a closed, bounded, convex cone set
in E. Let A : D(A) ⊂ K → 2E be a accretive operator such that D(A) ⊂ K ⊂

⋂
r>0

R(I + rA)

and T : K → CB(K) be a multivalued nonexpansive mapping with convex-values such that
Tp = {p} ∀ p ∈ Fix(T ) and Such that Ω1 ∩ Ω2 ̸= ∅.Let {xn} be a sequence defined iteratively
from arbitrary x0 ∈ K by: yn = βnxn + (1− βn)vn, vn ∈ T ◦ JA

r xn,

xn+1 = αn(λnxn) + (1− αn)yn

(4.10)

{βn}, {λn} and {αn} be sequences in (0, 1) satisfying:
(i) lim

n→∞
αn = 0; (ii) βn ∈ [a, b] ⊂ (0, 1),

(iii) lim
n→∞

λn = 1 and
∞∑

n=0

(1− λn)αn = ∞.

Then, the sequence {xn} generated by (4.10) converges strongly to a common solution of Problems
4.1 and 4.2.

Proof. From Theorem 3.2 and Lemma 2.2, T ◦ JA
r is nonexpansive on K and Ω1 ∩ Ω2 =

Fix(T ◦ JA
r ) = Fix(T ) ∩ Fix(JA

r ). Since lp spaces, 2 ≤ p < ∞ have weakly contin-
uous duality map, it follows Theorem 4.4 that {xn} converges strongly to some point
x∗ ∈ Fix(T ◦ JA

r ) ⇐⇒ x∗ ∈ Ω1 ∩ Ω2, completing the proof. □

We now give example of mappings T1 and T2 satisfying the assumptions of Theorem 3.2.
Let H = R and K = [1, 7]. For each x ∈ K we define F : K → (−∞,∞] by F (x) :=
1

2
∥x− 1∥2 and define a mapping T : K → CB(K) by

T2x =


{1}, x ∈ [1, 4],[
1,

2x2 + 1

x2 + 1

]
, x ∈ (4, 7].

(4.11)

It can easily be seen that T1 := JF
λ x and T2 are satisfied the conditions in Theorem 3.2 and

Fix(T2) ∩ argminu∈K F (u) = Fix(T2 ◦ T1) = {1}.
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